2,602 research outputs found
Mechanoregulation of bone remodeling and healing as inspiration for self-repair in materials
The material bone has attracted the attention of material scientists due to its fracture resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly synthesized material avoids the accumulation of fatigue damage. This remodeling process is also the basis for structural adaptation to common loading conditions, thereby reducing the probability of material failure. In the case of fracture, an initial step of tissue formation is followed by a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the control function is considered, which describes mechanoregulation as a link between mechanical stimulation and the local response of the material through changes in structure or material properties. Mechanical forces propagate over large distances leading to a complex non-local feedback between mechanical stimulation and material response. To better understand such phenomena, computer models are often employed. As expected from control theory, negative and positive feedback loops lead to entirely different time evolutions, corresponding to stable and unstable states of the material system. After some background information about bone remodeling and healing, we describe a few representative models, the corresponding control functions, and their consequences. The results are then discussed with respect to the potential design of synthetic materials with specific self-repair properties
CP Violating Asymmetry in Stop Decay into Bottom and Chargino
In the MSSM with complex parameters, loop corrections to the decay of a stop
into a bottom quark and a chargino can lead to a CP violating decay rate
asymmetry.
We calculate this asymmetry at full one-loop level and perform a detailed
numerical study, analyzing the dependence on the parameters and complex phases
involved. In addition, we take the Yukawa couplings of the top and bottom quark
running. We account for the constraints on the parameters coming from several
experimental limits.
Asymmetries of several percent are obtained. We also comment on the
feasibility of measuring this asymmetry at the LHC.Comment: Contributed talk given by Sebastian Frank in June 2009 at SUSY09 -
17th International Conference on Supersymmetry and the Unification of
Fundamental Interactions, Northeastern University, Boston, USA. To appear in
the AIP conference proceedings, 4 pages, 7 figures (fixed links in
references
Plants use identical inhibitors to protect their cell wall pectin against microbes and insects
Spin blockade in ground state resonance of a quantum dot
We present measurements on spin blockade in a laterally integrated quantum
dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~
50 electrons. At certain electronic states we find an additional mechanism
suppressing electron transport. This we identify as spin blockade at zero bias,
possibly accompanied by a change in orbital momentum in subsequent dot ground
states. We support this by probing the bias, magnetic field and temperature
dependence of the transport spectrum. Weak violation of the blockade is
modelled by detailed calculations of non-linear transport taking into account
forbidden transitions.Comment: 4 pages, 4 figure
Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator
We present measurements on microwave spectroscopy on a double quantum dot
with an on-chip microwave source. The quantum dots are realized in the
two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly
coupled in series by a tunnelling barrier forming an 'ionic' molecular state.
We employ a Josephson oscillator formed by a long Nb/Al-AlO/Nb junction as
a microwave source. We find photon-assisted tunnelling sidebands induced by the
Josephson oscillator, and compare the results with those obtained using an
externally operated microwave source.Comment: 6 pages, 4 figure
Improved full one-loop corrections to A^0 -> \sf_1 \sf_2 and \sf_2 -> \sf_1 A^0
We calculate the full electroweak one-loop corrections to the decay of the
CP-odd Higgs boson A^0 into scalar fermions in the minimal supersymmetric
extension of the Standard Model. For this purpose many parameters of the MSSM
have to be properly renormalized in the on-shell renormalization scheme. We
have also included the SUSY-QCD corrections. For the decay into bottom squarks
and tau sleptons, especially for large \tan\b, the corrections can be very
large making the perturbation expansion unreliable. We solve this problem by an
appropriate definition of the tree-level coupling in terms of running fermion
masses and running trilinear couplings A_f. We also discuss the decay of heavy
scalar fermions into light scalar fermions and A^0. We find that the
corrections can be sizeable and therefore cannot be neglected.Comment: 42 pages, 20 figures (23 eps-files
Frictional Drag Between Coupled 2D Hole Gases in GaAs/AlGaAs Heterostructures
We report on the first measurements of the drag effect between coupled
2D-hole gases. We investigate the coupling by changing the carrier densities in
the quantum wells, the widths of the barriers between the gases and the
perpendicular magnetic field. From the data we are able to attribute the
frictional drag to phonon coupling, because the non-parabolicity allows to tune
the Fermi wavevector and the Fermi velocity separately and, thereby, to
distinguish between phonon- and plasmon-dominated coupling.Comment: 10 pages, 5 figure
Evidence of breakdown of the spin symmetry in diluted 2D electron gases
Recent claims of an experimental demonstration of spontaneous spin
polarisation in dilute electron gases \cite{young99} revived long standing
theoretical discussions \cite{ceper99,bloch}. In two dimensions, the
stabilisation of a ferromagnetic fluid might be hindered by the occurrence of
the metal-insulator transition at low densities \cite{abra79}. To circumvent
localisation in the two-dimensional electron gas (2DEG) we investigated the low
populated second electron subband, where the disorder potential is mainly
screened by the high density of the first subband. This letter reports on the
breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of
the exchange and correlation terms of the Coulomb interaction, as determined
from the energies of the collective charge and spin excitations. Inelastic
light scattering experiments and calculations within the time-dependent local
spin-density approximation give strong evidence for the existence of a
ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte
Black Hole - Neutron Star Mergers as Central Engines of Gamma-Ray Bursts
Hydrodynamic simulations of the merger of stellar mass black hole - neutron
star binaries (BH/NS) are compared with mergers of binary neutron stars
(NS/NS). The simulations are Newtonian, but take into account the emission and
backreaction of gravitational waves. The use of a physical nuclear equation of
state allows us to include the effects of neutrino emission. For low neutron
star to black hole mass ratios the neutron star transfers mass to the black
hole during a few cycles of orbital decay and subsequent widening before
finally being disrupted, whereas for ratios near unity the neutron star is
already distroyed during its first approach. A gas mass between about 0.3 and
about 0.7 solar masses is left in an accretion torus around the black hole and
radiates neutrinos at a luminosity of several 10^{53} erg/s during an estimated
accretion time scale of about 0.1 s. The emitted neutrinos and antineutrinos
annihilate into electron-positron pairs with efficiencies of 1-3% percent and
rates of up to 2*10^{52} erg/s, thus depositing an energy of up to 10^{51} erg
above the poles of the black hole in a region which contains less than 10^{-5}
solar masses of baryonic matter. This could allow for relativistic expansion
with Lorentz factors around 100 and is sufficient to explain apparent burst
luminosities of up to several 10^{53} erg/s for burst durations of
approximately 0.1-1 s, if the gamma emission is collimated in two moderately
focussed jets in a fraction of about 1/100-1/10 of the sky.Comment: 8 pages, LaTex, 4 postscript figures, 2 tables. ApJ Letters,
accepted; revised and shortened version, Fig. 2 change
Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees
The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection
- …
