1,128 research outputs found
A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam
We have surveyed two science fields totaling one square degree with Bolocam
at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev-
Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields.
Our survey is sensitive to angular scales with an effective angular multipole
of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60
arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to
constrain the level of total astronomical anisotropy, modeled as a flat
bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590,
760, and 830 uKCMB^2. We statistically subtract the known contribution from
primary CMB anisotropy, including cosmic variance, to obtain constraints on the
SZE anisotropy contribution. Now including flux calibration uncertainty, our
frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are
690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum
suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of
the SZE anisotropy signal, we obtain upper limits on the average amplitude of
their spectrum weighted by our transfer function of 790, 1060, and 1080
uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power
spectrum of density fluctuations, of 1.57. These are the first constraints on
anisotropy and sigma8 from survey data at these angular scales at frequencies
near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap
Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers
We demonstrate a new approach for engineering group IV semiconductor-based
quantum photonic structures containing negatively charged silicon-vacancy
(SiV) color centers in diamond as quantum emitters. Hybrid SiC/diamond
structures are realized by combining the growth of nanoand micro-diamonds on
silicon carbide (3C or 4H polytype) substrates, with the subsequent use of
these diamond crystals as a hard mask for pattern transfer. SiV color
centers are incorporated in diamond during its synthesis from molecular diamond
seeds (diamondoids), with no need for ionimplantation or annealing. We show
that the same growth technique can be used to grow a diamond layer controllably
doped with SiV on top of a high purity bulk diamond, in which we
subsequently fabricate nanopillar arrays containing high quality SiV
centers. Scanning confocal photoluminescence measurements reveal optically
active SiV lines both at room temperature and low temperature (5 K) from
all fabricated structures, and, in particular, very narrow linewidths and small
inhomogeneous broadening of SiV lines from all-diamond nano-pillar arrays,
which is a critical requirement for quantum computation. At low temperatures (5
K) we observe in these structures the signature typical of SiV centers in
bulk diamond, consistent with a double lambda. These results indicate that high
quality color centers can be incorporated into nanophotonic structures
synthetically with properties equivalent to those in bulk diamond, thereby
opening opportunities for applications in classical and quantum information
processing
Puck protocol use case at obsea. Puck is the newest ogc standard for instrument identification and communication
Peer Reviewe
Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2
Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG
We demonstrate an application of spherical harmonic decomposition to analysis
of the human electroencephalogram (EEG). We implement two methods and discuss
issues specific to analysis of hemispherical, irregularly sampled data.
Performance of the methods and spatial sampling requirements are quantified
using simulated data. The analysis is applied to experimental EEG data,
confirming earlier reports of an approximate frequency-wavenumber relationship
in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX
style
A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey
We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey,
which covers 324 square arcmin to a very uniform point source-filtered RMS
noise level of 1.4 mJy/beam. The fluctuation analysis has the significant
advantage of utilizing all of the available data. We constrain the number
counts in the 1-10 mJy range, and derive significantly tighter constraints than
in previous work: the power-law index is 2.7 (+0.18, -0.15), while the
amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or
N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results
agree extremely well with those derived from the extracted source number counts
by Laurent et al (2005). Our derived normalization is about 2.5 times smaller
than determined by MAMBO at 1.2mm by Greve et al (2004). However, the
uncertainty in the normalization for both data sets is dominated by the
systematic (i.e., absolute flux calibration) rather than statistical errors;
within these uncertainties, our results are in agreement. We estimate that
about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure
- …
