1,128 research outputs found

    Environmental changes and radioactive tracers

    Get PDF

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap

    Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers

    Full text link
    We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV^-) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by combining the growth of nanoand micro-diamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV^- color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ionimplantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV^- on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV^- centers. Scanning confocal photoluminescence measurements reveal optically active SiV^- lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow linewidths and small inhomogeneous broadening of SiV^- lines from all-diamond nano-pillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV^- centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing

    Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2

    Get PDF
    Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists

    Improved limits on nuebar emission from mu+ decay

    Full text link
    We investigated mu+ decays at rest produced at the ISIS beam stop target. Lepton flavor (LF) conservation has been tested by searching for \nueb via the detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays was identified. We extract upper limits of the branching ratio for the LF violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ -> e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0). These results improve earlier limits by one order of magnitude and restrict extensions of the SM in which \nueb emission from mu+ decay is allowed with considerable strength. The decay \mupdeb as source for the \nueb signal observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl

    Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    Full text link
    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX style

    A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey

    Full text link
    We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey, which covers 324 square arcmin to a very uniform point source-filtered RMS noise level of 1.4 mJy/beam. The fluctuation analysis has the significant advantage of utilizing all of the available data. We constrain the number counts in the 1-10 mJy range, and derive significantly tighter constraints than in previous work: the power-law index is 2.7 (+0.18, -0.15), while the amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results agree extremely well with those derived from the extracted source number counts by Laurent et al (2005). Our derived normalization is about 2.5 times smaller than determined by MAMBO at 1.2mm by Greve et al (2004). However, the uncertainty in the normalization for both data sets is dominated by the systematic (i.e., absolute flux calibration) rather than statistical errors; within these uncertainties, our results are in agreement. We estimate that about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure

    Fluorine in animal nutrition

    Get PDF
    corecore