2,101 research outputs found

    Novel self-assembled morphologies from isotropic interactions

    Get PDF
    We present results from particle simulations with isotropic medium range interactions in two dimensions. At low temperature novel types of aggregated structures appear. We show that these structures can be explained by spontaneous symmetry breaking in analytic solutions to an adaptation of the spherical spin model. We predict the critical particle number where the symmetry breaking occurs and show that the resulting phase diagram agrees well with results from particle simulations.Comment: 4 pages, 4 figure

    Using the uncertainty principle to design simple interactions for targeted self-assembly

    Get PDF
    We present a method that systematically simplifies isotropic interactions designed for targeted self-assembly. The uncertainty principle is used to show that an optimal simplification is achieved by a combination of heat kernel smoothing and Gaussian screening of the interaction potential in real and reciprocal space. We use this method to analytically design isotropic interactions for self-assembly of complex lattices and of materials with functional properties. The derived interactions are simple enough to narrow the gap between theory and experimental implementation of theory based designed self-assembling materials

    Turbulence and jet-driven zonal flows: Secondary circulation in rotating fluids due to asymmetric forcing

    Get PDF
    We report on experiments and modeling on a rotating confined liquid that is forced by circumferential jets coaxial with the rotation axis, wherein system-scale secondary flows are observed to emerge. The jets are evenly divided in number between inlets and outlets and have zero net mass transport. For low forcing strengths the sign of this flow depends on the sign of a sloped end cap, which simulates a planetary β plane. For increased forcing strengths the secondary flow direction is insensitive to the slope sign, and instead appears to be dominated by an asymmetry in the forcing mechanism, namely, the difference in radial divergence between the inlet and outlet jet profiles. This asymmetry yields a net radial velocity that is affected by the Coriolis force, inducing secondary zonal flow

    Multiple functional risk variants in a SMAD7 enhancer implicate a colorectal cancer risk haplotype

    Get PDF
    Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways

    Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Get PDF
    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m[-3 superscript]]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n||-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Developing and implementing an integrated delirium prevention system of care:a theory driven, participatory research study

    Get PDF
    Background: Delirium is a common complication for older people in hospital. Evidence suggests that delirium incidence in hospital may be reduced by about a third through a multi-component intervention targeted at known modifiable risk factors. We describe the research design and conceptual framework underpinning it that informed the development of a novel delirium prevention system of care for acute hospital wards. Particular focus of the study was on developing an implementation process aimed at embedding practice change within routine care delivery. Methods: We adopted a participatory action research approach involving staff, volunteers, and patient and carer representatives in three northern NHS Trusts in England. We employed Normalization Process Theory to explore knowledge and ward practices on delirium and delirium prevention. We established a Development Team in each Trust comprising senior and frontline staff from selected wards, and others with a potential role or interest in delirium prevention. Data collection included facilitated workshops, relevant documents/records, qualitative one-to-one interviews and focus groups with multiple stakeholders and observation of ward practices. We used grounded theory strategies in analysing and synthesising data. Results: Awareness of delirium was variable among staff with no attention on delirium prevention at any level; delirium prevention was typically neither understood nor perceived as meaningful. The busy, chaotic and challenging ward life rhythm focused primarily on diagnostics, clinical observations and treatment. Ward practices pertinent to delirium prevention were undertaken inconsistently. Staff welcomed the possibility of volunteers being engaged in delirium prevention work, but existing systems for volunteer support were viewed as a barrier. Our evolving conception of an integrated model of delirium prevention presented major implementation challenges flowing from minimal understanding of delirium prevention and securing engagement of volunteers alongside practice change. The resulting Prevention of Delirium (POD) Programme combines a multi-component delirium prevention and implementation process, incorporating systems and mechanisms to introduce and embed delirium prevention into routine ward practices. Conclusions: Although our substantive interest was in delirium prevention, the conceptual and methodological strategies pursued have implications for implementing and sustaining practice and service improvements more broadly
    corecore