3,428 research outputs found

    Vibration-induced climbing of drops

    Full text link
    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.Comment: 4 pages, 7 figure

    Coalescence of Liquid Drops

    Get PDF
    When two drops of radius RR touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behavior of the radius \rmn of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length 2\pi \rmn and width \Delta\ll\rmn around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. An exact two-dimensional solution for the case of inviscid surroundings [Hopper, J. Fluid Mech. 213{\bf 213}, 349 (1990)] shows that \Delta \propto \rmn^3 and \rmn \sim (t\gamma/\pi\eta)\ln [t\gamma/(\eta R)]; and thus the same is true in three dimensions. The case of coalescence with an external viscous fluid is also studied in detail both analytically and numerically. A significantly different structure is found in which the outer fluid forms a toroidal bubble of radius \Delta \propto \rmn^{3/2} at the meniscus and \rmn \sim (t\gamma/4\pi\eta) \ln [t\gamma/(\eta R)]. This basic difference is due to the presence of the outer fluid viscosity, however small. With lengths scaled by RR a full description of the asymptotic flow for \rmn(t)\ll1 involves matching of lengthscales of order \rmn^2, \rmn^{3/2}, \rmn,1andprobably, 1 and probably \rmn^{7/4}$.Comment: 36 pages, including 9 figure

    Monoamine activity reflected in urine of young patients with obsessive compulsive disorder, psychosis with and without reality distortion and healthy subjects: an explorative analysis

    Get PDF
    Introduction: Positive psychotic symptoms are reported to be associated with high dopamine (DA), negative symptoms with low DA activity and serotonin (5-HT) activity may be altered in obsessive-compulsive disorder (OCD). Method: We analysed 24h urine samples in groups of patients with OCD, paranoid and non-paranoid schizophrenia and in healthy controls for supportive evidence. Results: Young unmedicated OCD subjects excreted more adrenaline (AD) and homovanillic acid (HVA) and showed a higher HVA/MHPG metabolite ratio and metabolic rate than healthy controls. Independent of general metabolic rate OCD patients showed higher HVA concentrations which suggests that the relative activity of catecholamine systems in OCD (HVA/MHPG) is due more to high DA than to low noradrenergic (NA) activity. Concentrations of 5-HT were also high in OCD patients. In psychotic patients low levels of DA, HVA, NA and MHPG probably resulted from neuroleptic medication. Conclusions: 1. Patients diagnosed with paranoid psychosis showed higher DA utilization than controls and those with few paranoid symptoms showed high 5-HT utilization. 2. These results support studies suggesting that paranoid psychosis is associated more with increased DA activity (discussed in the context of neuroleptic reactivity), that non-paranoid forms are associated more with increased 5-HT activity and that OCD patients are unusually aroused with high levels of Adrenaline, 5-HT and HVA

    Simulation of a Dripping Faucet

    Full text link
    We present a simulation of a dripping faucet system. A new algorithm based on Lagrangian description is introduced. The shape of drop falling from a faucet obtained by the present algorithm agrees quite well with experimental observations. Long-term behavior of the simulation can reproduce period-one, period-two, intermittent and chaotic oscillations widely observed in experiments. Possible routes to chaos are discussed.Comment: 20 pages, 15 figures, J. Phys. Soc. Jpn. (in press

    Local structure of Liquid-Vapour Interfaces

    Full text link
    The structure of a simple liquid may be characterised in terms of ground state clusters of small numbers of atoms of that same liquid. Here we use this sensitive structural probe to consider the effect of a liquid-vapour interface upon the liquid structure. At higher temperatures (above around half the critical temperature) we find that the predominant effect of the interface is to reduce the local density, which significantly suppresses the local cluster populations. At lower temperatures, however, pronounced interfacial layering is found. This appears to be connected with significant orientational ordering of clusters based on 3- and 5-membered rings, with the rings aligning perpendicular and parallel to the interface respectively. At all temperatures, we find that the population of five-fold symmetric structures is suppressed, rather than enhanced, close to the interface.Comment: 10 pages, 8 figures, accepted for publication by Molecular Physic

    One-Dimensional Approximation of Viscous Flows

    Full text link
    Attention has been paid to the similarity and duality between the Gregory-Laflamme instability of black strings and the Rayleigh-Plateau instability of extended fluids. In this paper, we derive a set of simple (1+1)-dimensional equations from the Navier-Stokes equations describing thin flows of (non-relativistic and incompressible) viscous fluids. This formulation, a generalization of the theory of drop formation by Eggers and his collaborators, would make it possible to examine the final fate of Rayleigh-Plateau instability, its dimensional dependence, and possible self-similar behaviors before and after the drop formation, in the context of fluid/gravity correspondence.Comment: 17 pages, 3 figures; v2: refs & comments adde

    Planetary explorer liquid propulsion study

    Get PDF
    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined

    Stochastic energy-cascade model for 1+1 dimensional fully developed turbulence

    Full text link
    Geometrical random multiplicative cascade processes are often used to model positive-valued multifractal fields such as the energy dissipation in fully developed turbulence. We propose a dynamical generalization describing the energy dissipation in terms of a continuous and homogeneous stochastic field in one space and one time dimension. In the model, correlations originate in the overlap of the respective spacetime histories of field amplitudes. The theoretical two- and three-point correlation functions are found to be in good agreement with their equal-time counterparts extracted from wind tunnel turbulent shear flow data
    corecore