6,996 research outputs found
Spatially Resolved Spectroscopy of Sub-AU-Sized Regions of T Tauri and Herbig Ae/Be Disks
We present spatially resolved near-IR spectroscopic observations of 15 young
stars. Using a grism spectrometer behind the Keck Interferometer, we obtained
an angular resolution of a few milli-arcseconds and a spectral resolution of
230, enabling probes of both gas and dust in the inner disks surrounding the
target stars. We find that the angular size of the near-IR emission typically
increases with wavelength, indicating hot, presumably gaseous material within
the dust sublimation radius. Our data also clearly indicate Brackett-gamma
emission arising from hot hydrogen gas, and suggest the presence of water vapor
and carbon monoxide gas in the inner disks of several objects. This gaseous
emission is more compact than the dust continuum emission in all cases. We
construct simple physical models of the inner disk and fit them to our data to
constrain the spatial distribution and temperature of dust and gas emission
components.Comment: 40 pages, 8 figures. Accepted for publication in Ap
Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars
We present near-infrared observations of T Tauri and Herbig Ae/Be stars with
a spatial resolution of a few milli-arcseconds and a spectral resolution of
~2000. Our observations spatially resolve gas and dust in the inner regions of
protoplanetary disks, and spectrally resolve broad-linewidth emission from the
Brackett gamma transition of hydrogen gas. We use the technique of
spectro-astrometry to determine centroids of different velocity components of
this gaseous emission at a precision orders of magnitude better than the
angular resolution. In all sources, we find the gaseous emission to be more
compact than or distributed on similar spatial scales to the dust emission. We
attempt to fit the data with models including both dust and Brackett
gamma-emitting gas, and we consider both disk and infall/outflow morphologies
for the gaseous matter. In most cases where we can distinguish between these
two models, the data show a preference for infall/outflow models. In all cases,
our data appear consistent with the presence of some gas at stellocentric radii
of ~0.01 AU. Our findings support the hypothesis that Brackett gamma emission
generally traces magnetospherically driven accretion and/or outflows in young
star/disk systems.Comment: 48 pages, including 17 figures. Accepted for publication by Ap
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419
We present spatially-resolved K- and L-band spectra (at spectral resolution R
= 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were
obtained simultaneously with a new configuration of the 85-m baseline Keck
Interferometer. Our observations are sensitive to the radial distribution of
temperature in the inner region of the disk of MWC 419. We fit the visibility
data with both simple geometric and more physical disk models. The geometric
models (uniform disk and Gaussian) show that the apparent size increases
linearly with wavelength in the 2-4 microns wavelength region, suggesting that
the disk is extended with a temperature gradient. A model having a power-law
temperature gradient with radius simultaneously fits our interferometric
measurements and the spectral energy distribution data from the literature. The
slope of the power-law is close to that expected from an optically thick disk.
Our spectrally dispersed interferometric measurements include the Br gamma
emission line. The measured disk size at and around Br gamma suggests that
emitting hydrogen gas is located inside (or within the inner regions) of the
dust disk.Comment: Accepted for publication in Ap
Interferometric Observations of V838 Monocerotis
We have used long-baseline near-IR interferometry to resolve the peculiar
eruptive variable V838 Mon and to provide the first direct measurement of its
angular size. Assuming a uniform disk model for the emission we derive an
apparent angular diameter at the time of observations (November-December 2004)
of milli-arcseconds. For a nominal distance of kpc,
this implies a linear radius of . However, the data are
somewhat better fit by elliptical disk or binary component models, and we
suggest that the emission may be strongly affected by ejecta from the outburst.Comment: 12 pages, 1 two-part encapsulated postscript figure. Accepted by
ApJL. Added a table of observation
Science with the Keck Interferometer ASTRA Program
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide
phase referencing and astrometric observations at the Keck Interferometer,
leading to enhanced sensitivity and the ability to monitor orbits at an
accuracy level of 30-100 microarcseconds. Here we discuss recent scientific
results from ASTRA, and describe new scientific programs that will begin in
2010-2011. We begin with results from the "self phase referencing" (SPR) mode
of ASTRA, which uses continuum light to correct atmospheric phase variations
and produce a phase-stabilized channel for spectroscopy. We have observed a
number of protoplanetary disks using SPR and a grism providing a spectral
dispersion of ~2000. In our data we spatially resolve emission from dust as
well as gas. Hydrogen line emission is spectrally resolved, allowing
differential phase measurements across the emission line that constrain the
relative centroids of different velocity components at the 10 microarcsecond
level. In the upcoming year, we will begin dual-field phase referencing (DFPR)
measurements of the Galactic Center and a number of exoplanet systems. These
observations will, in part, serve as precursors to astrometric monitoring of
stellar orbits in the Galactic Center and stellar wobbles of exoplanet host
stars. We describe the design of several scientific investigations capitalizing
on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical
and Infrared Interferometry II
Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets.
BACKGROUND:The Human Epidermal Growth Factor Receptor (EGFR/HER1) can be activated by several ligands including Transforming Growth Factor alpha (TGF-α) and Epidermal Growth Factor (EGF). Following ligand binding, EGFR heterodimerizes with other HER family members, such as HER2 (human epidermal growth factor receptor-2). Previously, we showed that the EGFR is upregulated in trastuzumab resistant HER2 positive (HER2+) breast cancer cells. This study is aimed to determine the downstream effects on transcription following EGFR upregulation in HER2+ breast cancer cells. METHODS:RNA-sequence and ChIP-sequence for H3K18ac and H3K27ac (Histone H3 lysine K18 and K27 acetylation) were conducted following an Epidermal Growth Factor (EGF) treatment time course in HER2+ breast cancer cells, SKBR3. The levels of several proteins of interest were confirmed by western blot analysis. The cellular localization of proteins of interest was examined using biochemically fractionated lysates followed by western blot analysis. RESULTS:Over the course of 24 h, EGFR stimulation resulted in the modulation of over 4000 transcripts. Moreover, our data demonstrates that EGFR/HER2 signaling regulates the epigenome, with global H3K18ac and H3K27ac oscillating as a function of time following EGF treatment. RNA-sequence data demonstrates the activation of immediate early genes (IEGs) and delayed early genes (DEGs) within 1 h of EGF treatment. More importantly, we have identified members of the S100 (S100 Calcium Binding Protein) gene family as likely direct targets of EGFR signaling as H3K18ac, H3K27ac and pol2 (RNA polymerase II) increase near the transcription start sites of some of these genes. CONCLUSIONS:Our data suggests that S100 proteins, which act as Ca2+ sensors, could play a role in EGF induced tumor cell growth and metastasis, contribute to trastuzumab resistance and cell migration and that they are likely drug targets in HER2+ breast cancer
- …
