695 research outputs found
The boundary element approach to Van der Waals interactions
We develop a boundary element method to calculate Van der Waals interactions
for systems composed of domains of spatially constant dielectric response. We
achieve this by rewriting the interaction energy expression exclusively in
terms of surface integrals of surface operators. We validate this approach in
the Lifshitz case and give numerical results for the interaction of two spheres
as well as the van der Waals self-interaction of a uniaxial ellipsoid. Our
method is simple to implement and is particularly suitable for a full,
non-perturbative numerical evaluation of non-retarded van der Waals
interactions between objects of a completely general shape.Comment: 4 pages, 4 figures, RevTe
Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects
We report measurements of the irreversible magnetization M_i of a large
number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them
exhibit a maximum in M_i when the density of vortices equals the density of
tracks, at temperatures above 40K. We show that the observation of these
matching field effects is constrained to those crystals where the orientational
and pinning energy dispersion of the CD system lies below a certain threshold.
The amount of such dispersion is determined by the mass and energy of the
irradiation ions, and by the crystal thickness. Time relaxation measurements
show that the matching effects are associated with a reduction of the creep
rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors
In high transition temperature (T_c) superconductivity, charge doping is a
natural tuning parameter that takes copper oxides from the antiferromagnet to
the superconducting region. In the metallic state above T_c the standard
Landau's Fermi-liquid theory of metals as typified by the temperature squared
(T^2) dependence of resistivity appears to break down. Whether the origin of
the non-Fermi-liquid behavior is related to physics specific to the cuprates is
a fundamental question still under debate. We uncover a new transformation from
the non-Fermi- to a standard Fermi-liquid state driven not by doping but by
magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From
the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid
features appear above a sufficiently high field which decreases linearly with
temperature and lands at a quantum critical point near the superconductivity's
upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence
showing a power-law diverging behavior on the approach to the critical point.
This field-induced quantum criticality bears a striking resemblance to that in
quasi-two dimensional heavy-Fermion superconductors, suggesting a common
underlying spin-related physics in these superconductors with strong electron
correlations.Comment: 6 pages, 4 figure
Magnetocaloric Studies of the Peak Effect in Nb
We report a magnetocaloric study of the peak effect and Bragg glass
transition in a Nb single crystal. The thermomagnetic effects due to vortex
flow into and out of the sample are measured. The magnetocaloric signature of
the peak effect anomaly is identified. It is found that the peak effect
disappears in magnetocaloric measurements at fields significantly higher than
those reported in previous ac-susceptometry measurements. Investigation of the
superconducting to normal transition reveals that the disappearance of the bulk
peak effect is related to inhomogeneity broadening of the superconducting
transition. The emerging picture also explains the concurrent disappearance of
the peak effect and surface superconductivity, which was reported previously in
the sample under investigation. Based on our findings we discuss the
possibilities of multicriticality associated with the disappearance of the peak
effect.Comment: 30 pages, 10 figure
Stable ultrahigh-density magneto-optical recordings using introduced linear defects
The stability of data bits in magnetic recording media at ultrahigh densities
is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized
spin domains, which erase the stored information. Media that are magnetized
perpendicular to the plane of the film, such as ultrathin cobalt films or
multilayered structures, are more stable against thermal self-erasure than
conventional memory devices. In this context, magneto-optical memories seem
particularly promising for ultrahigh-density recording on portable disks, and
bit densities of 100 Gbit inch have been demonstrated using recent
advances in the bit writing and reading techniques. But the roughness and
mobility of the magnetic domain walls prevents closer packing of the magnetic
bits, and therefore presents a challenge to reaching even higher bit densities.
Here we report that the strain imposed by a linear defect in a magnetic thin
film can smooth rough domain walls over regions hundreds of micrometers in
size, and halt their motion. A scaling analysis of this process, based on the
generic physics of disorder-controlled elastic lines, points to a simple way by
which magnetic media might be prepared that can store data at densities in
excess of 1 Tbit inch.Comment: 5 pages, 4 figures, see also an article in TRN News at
http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm
B(H) Constitutive Relations Near H_c1 in Disordered Superconductors
We provide a self-contained account of the B vs. H constitutive relation near
H_c1 in Type II superconductors with various types of quenched random disorder.
The traditional Abrikosov result B ~ [ln (H - H_c1)]^{-2}, valid in the absence
of disorder and thermal fluctuations, changes significantly in the presence of
disorder. Moreover, the constitutive relations will depend strongly on the type
of disorder. In the presence of point disorder, B ~ (H - H_c1)^{3/2} in
three-dimensional (thick) superconductors, as shown by Nattermann and Lipowsky.
In two-dimensional (thin film) superconductors with point disorder, B ~ (H -
H_c1). In the presence of parallel columnar disorder, we find that B ~ exp[-C /
(H - H_c1)] in three dimensions, while B ~ exp[-K / (H - H_c1)^{1/2}] in two
dimensions. In the presence of nearly isotropically splayed disorder, we find
that B ~ (H - H_c1)^{3/2} in both two and three dimensions.Comment: 37 pages, 12 figures included in text; submitted to Physica
Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality
We present scanning tunneling spectroscopic and high-field thermodynamic
studies of hole- and electron-doped (p- and n-type) cuprate superconductors.
Our experimental results are consistent with the notion that the ground state
of cuprates is in proximity to a quantum critical point (QCP) that separates a
pure superconducting (SC) phase from a phase comprised of coexisting SC and a
competing order, and the competing order is likely a spin-density wave (SDW).
The effect of applied magnetic field, tunneling current, and disorder on the
revelation of competing orders and on the low-energy excitations of the
cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International
Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail:
[email protected]
- …
