1,354 research outputs found

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Group polytope faces pursuit for recovery of block-sparse signals

    Get PDF
    This is the accepted version of the article. The final publication is available at link.springer.com. http://www.springerlink.com/content/e0r61416446277w0

    A Multichannel Spatial Compressed Sensing Approach for Direction of Arrival Estimation

    Get PDF
    The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-15995-4_57ESPRC Leadership Fellowship EP/G007144/1EPSRC Platform Grant EP/045235/1EU FET-Open Project FP7-ICT-225913\"SMALL

    On the distinguishability of random quantum states

    Get PDF
    We develop two analytic lower bounds on the probability of success p of identifying a state picked from a known ensemble of pure states: a bound based on the pairwise inner products of the states, and a bound based on the eigenvalues of their Gram matrix. We use the latter to lower bound the asymptotic distinguishability of ensembles of n random quantum states in d dimensions, where n/d approaches a constant. In particular, for almost all ensembles of n states in n dimensions, p>0.72. An application to distinguishing Boolean functions (the "oracle identification problem") in quantum computation is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi

    Universal 2-local Hamiltonian Quantum Computing

    Full text link
    We present a Hamiltonian quantum computation scheme universal for quantum computation (BQP). Our Hamiltonian is a sum of a polynomial number (in the number of gates L in the quantum circuit) of time-independent, constant-norm, 2-local qubit-qubit interaction terms. Furthermore, each qubit in the system interacts only with a constant number of other qubits. The computer runs in three steps - starts in a simple initial product-state, evolves it for time of order L^2 (up to logarithmic factors) and wraps up with a two-qubit measurement. Our model differs from the previous universal 2-local Hamiltonian constructions in that it does not use perturbation gadgets, does not need large energy penalties in the Hamiltonian and does not need to run slowly to ensure adiabatic evolution.Comment: recomputed the necessary number of interactions, new geometric layout, added reference

    A characterization of Schauder frames which are near-Schauder bases

    Full text link
    A basic problem of interest in connection with the study of Schauder frames in Banach spaces is that of characterizing those Schauder frames which can essentially be regarded as Schauder bases. In this paper, we give a solution to this problem using the notion of the minimal-associated sequence spaces and the minimal-associated reconstruction operators for Schauder frames. We prove that a Schauder frame is a near-Schauder basis if and only if the kernel of the minimal-associated reconstruction operator contains no copy of c0c_0. In particular, a Schauder frame of a Banach space with no copy of c0c_0 is a near-Schauder basis if and only if the minimal-associated sequence space contains no copy of c0c_0. In these cases, the minimal-associated reconstruction operator has a finite dimensional kernel and the dimension of the kernel is exactly the excess of the near-Schauder basis. Using these results, we make related applications on Besselian frames and near-Riesz bases.Comment: 12 page

    Finite quantum tomography via semidefinite programming

    Full text link
    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \cite{schack,Pegg,Barnett,Buzek,Weigert}.Comment: 25 page
    corecore