1,354 research outputs found
Asymptotic Task-Based Quantization with Application to Massive MIMO
Quantizers take part in nearly every digital signal processing system which
operates on physical signals. They are commonly designed to accurately
represent the underlying signal, regardless of the specific task to be
performed on the quantized data. In systems working with high-dimensional
signals, such as massive multiple-input multiple-output (MIMO) systems, it is
beneficial to utilize low-resolution quantizers, due to cost, power, and memory
constraints. In this work we study quantization of high-dimensional inputs,
aiming at improving performance under resolution constraints by accounting for
the system task in the quantizers design. We focus on the task of recovering a
desired signal statistically related to the high-dimensional input, and analyze
two quantization approaches: We first consider vector quantization, which is
typically computationally infeasible, and characterize the optimal performance
achievable with this approach. Next, we focus on practical systems which
utilize hardware-limited scalar uniform analog-to-digital converters (ADCs),
and design a task-based quantizer under this model. The resulting system
accounts for the task by linearly combining the observed signal into a lower
dimension prior to quantization. We then apply our proposed technique to
channel estimation in massive MIMO networks. Our results demonstrate that a
system utilizing low-resolution scalar ADCs can approach the optimal channel
estimation performance by properly accounting for the task in the system
design
Group polytope faces pursuit for recovery of block-sparse signals
This is the accepted version of the article. The final publication is available at link.springer.com. http://www.springerlink.com/content/e0r61416446277w0
A Multichannel Spatial Compressed Sensing Approach for Direction of Arrival Estimation
The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-15995-4_57ESPRC Leadership Fellowship EP/G007144/1EPSRC Platform Grant EP/045235/1EU FET-Open Project FP7-ICT-225913\"SMALL
On the distinguishability of random quantum states
We develop two analytic lower bounds on the probability of success p of
identifying a state picked from a known ensemble of pure states: a bound based
on the pairwise inner products of the states, and a bound based on the
eigenvalues of their Gram matrix. We use the latter to lower bound the
asymptotic distinguishability of ensembles of n random quantum states in d
dimensions, where n/d approaches a constant. In particular, for almost all
ensembles of n states in n dimensions, p>0.72. An application to distinguishing
Boolean functions (the "oracle identification problem") in quantum computation
is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi
Universal 2-local Hamiltonian Quantum Computing
We present a Hamiltonian quantum computation scheme universal for quantum
computation (BQP). Our Hamiltonian is a sum of a polynomial number (in the
number of gates L in the quantum circuit) of time-independent, constant-norm,
2-local qubit-qubit interaction terms. Furthermore, each qubit in the system
interacts only with a constant number of other qubits. The computer runs in
three steps - starts in a simple initial product-state, evolves it for time of
order L^2 (up to logarithmic factors) and wraps up with a two-qubit
measurement. Our model differs from the previous universal 2-local Hamiltonian
constructions in that it does not use perturbation gadgets, does not need large
energy penalties in the Hamiltonian and does not need to run slowly to ensure
adiabatic evolution.Comment: recomputed the necessary number of interactions, new geometric
layout, added reference
A characterization of Schauder frames which are near-Schauder bases
A basic problem of interest in connection with the study of Schauder frames
in Banach spaces is that of characterizing those Schauder frames which can
essentially be regarded as Schauder bases. In this paper, we give a solution to
this problem using the notion of the minimal-associated sequence spaces and the
minimal-associated reconstruction operators for Schauder frames. We prove that
a Schauder frame is a near-Schauder basis if and only if the kernel of the
minimal-associated reconstruction operator contains no copy of . In
particular, a Schauder frame of a Banach space with no copy of is a
near-Schauder basis if and only if the minimal-associated sequence space
contains no copy of . In these cases, the minimal-associated
reconstruction operator has a finite dimensional kernel and the dimension of
the kernel is exactly the excess of the near-Schauder basis. Using these
results, we make related applications on Besselian frames and near-Riesz bases.Comment: 12 page
Finite quantum tomography via semidefinite programming
Using the the convex semidefinite programming method and superoperator
formalism we obtain the finite quantum tomography of some mixed quantum states
such as: qudit tomography, N-qubit tomography, phase tomography and coherent
spin state tomography, where that obtained results are in agreement with those
of References \cite{schack,Pegg,Barnett,Buzek,Weigert}.Comment: 25 page
- …
