2,735 research outputs found

    Workshop on Cosmogenic Nuclides

    Get PDF
    Abstracts of papers presented at the Workshop on Cosmogenic Nuclides are compiled. The major topic areas covered include: new techniques for measuring nuclides such as tandem accelerator and resonance mass spectrometry; solar modulation of cosmic rays; pre-irradiation histories of extraterrestrial materials; terrestrial studies; simulations and cross sections; nuclide production rate calculations; and meteoritic nuclides

    Hierarchy of inequalities for quantitative duality

    Full text link
    We derive different relations quantifying duality in a generic two-way interferometer. These relations set different upper bounds to the visibility V of the fringes measured at the output port of the interferometer. A hierarchy of inequalities is presented which exhibits the influence of the availability to the experimenter of different sources of which-way information contributing to the total distinguishability D of the ways. For mixed states and unbalanced interferometers an inequality is derived, V^2+ Xi^2 \leq 1, which can be more stringent than the one associated with the distinguishability (V^2+ D^2 \leq 1).Comment: 7 pages, 4 figure

    Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    Get PDF
    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron

    On the Opening of Branes

    Get PDF
    We relate, in 10 and 11 dimensional supergravities, configurations of intersecting closed branes with vanishing binding energy to configurations where one of the branes opens and has its boundaries attached to the other. These boundaries are charged with respect to fields living on the closed brane. The latter hosts electric and magnetic charges stemming from dual pairs of open branes terminating on it. We show that charge conservation, gauge invariance and supersymmetry entirely determine these charges and these fields, which can be seen as Goldstone fields of broken supersymmetry. Open brane boundary charges can annihilate, restoring the zero binding energy configuration. This suggests emission of closed branes by branes, a generalization of closed string emission by D-branes. We comment on the relation of the Goldstone fields to matrix models approaches to M-theory.Comment: 13 pages, LaTeX, no figure

    On Visibility in the Afshar Two-Slit Experiment

    Full text link
    A modified version of Young's experiment by Shahriar Afshar indirectly reveals the presence of a fully articulated interference pattern prior to the post-selection of a particle in a "which-slit" basis. While this experiment does not constitute a violation of Bohr's Complementarity Principle as claimed by Afshar, both he and many of his critics incorrectly assume that a commonly used relationship between visibility parameter V and "which-way" parameter K has crucial relevance to his experiment. It is argued here that this relationship does not apply to this experimental situation and that it is wrong to make any use of it in support of claims for or against the bearing of this experiment on Complementarity.Comment: Final version; to appear in Foundations of Physic

    Simulation of cosmic irradiation conditions in thick target arrangements

    Get PDF
    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target

    Анализ социальных медиа

    Get PDF
    The experimental electron-density distributions in crystals of five chain polymers [M(μ-X)2(py)2] (M = Zn, Cd; X = Cl, Br; py = 3,5-substituted pyridine) have been obtained from high-resolution X-ray diffraction data sets (sin θ/λ > 1.1 Å−1) at 100 K. Topological analyses following Bader's `Atoms in Molecules' approach not only confirmed the existence of (3, −1) critical points for the chemically reasonable and presumably strong covalent and coordinative bonds, but also for four different secondary interactions which are expected to play a role in stabilizing the polymeric structures which are unusual for Zn as the metal center. These weaker contacts comprise intra- and inter-strand C—H⋯X—M hydrogen bonds on the one hand and C—X⋯X—C interhalogen contacts on the other hand. According to the experimental electron-density studies, the non-classical hydrogen bonds are associated with higher electron density in the (3, −1) critical points than the halogen bonds and hence are the dominant interactions both with respect to intra- and inter-chain contacts

    Hot ion plasma heating experiments in SUMMA

    Get PDF
    Initial results are presented for the hot-ion plasma heating experiments conducted in the new SUMMA (superconducting magnetic mirror apparatus) at NASA Lewis Research Center. A discharge is formed by applying a radially inward dc electric field between cylindrical anodes and hallow cathodes located at the peak of the mirrors. Data were obtained at midplane magnetic field strengths from 1.0 to 3.5 tesla. Charge-exchange neutral particle energy analyzer data were reduced to ion temperatures using a plasma model that included a Maxwellian energy distribution superimposed on an azimuthal drift, finite ion orbits, and radial variations in density and electric field. The best ion temperatures in a helium plasma were 5 keV and in hydrogen the H2(+) and H(+) ions were 1.2 keV and 1 keV respectively. Optical spectroscopy line broadening measurements yielded ion temperatures about 50 percent higher than the charge-exchange neutral particle analyzer results. Spectroscopically obtained electron temperature ranged from 3 to 30 eV. Ion temperature was found to scale roughly linearly with the ratio of power input-to-magnetic field strength, P/B

    Black Hole Horizon Fluctuations

    Get PDF
    It is generally admitted that gravitational interactions become large at an invariant distance of order 11 from the black hole horizon. We show that due to the ``atmosphere'' of high angular particles near the horizon strong gravitational interactions already occur at an invariant distance of the order of M3\sqrt[3]{M}. The implications of these results for the origin of black hole radiation, the meaning of black hole entropy and the information puzzle are discussed.Comment: Latex, 22 pages (minor corrections and precisions added
    corecore