1,303 research outputs found

    Direct Detection of Non-Chiral Dark Matter

    Full text link
    Direct detection experiments rule out fermion dark matter that is a chiral representation of the electroweak gauge group. Non-chiral real, complex and singlet representations, however, provide viable fermion dark matter candidates. Although any one of these candidates will be virtually impossible to detect at the LHC, it is shown that they may be detected at future planned direct detection experiments. For the real case, an irreducible radiative coupling to quarks may allow a detection. The complex case in general has an experimentally ruled out tree-level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)_L doublets, a higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible radiative coupling may allow a detection. Singlet dark matter could be detected through a coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and this mass is a useful characterization of its direct detection cross-section.Comment: 22 pages, 3 figures. References added. Minor corrections to match published versio

    Signatures of sub-GeV dark matter beams at neutrino experiments

    Full text link
    We study the high-luminosity fixed-target neutrino experiments at MiniBooNE, MINOS and T2K and analyze their sensitivity to light stable states, focusing on MeV--GeV scale dark matter. Thermal relic dark matter scenarios in the sub-GeV mass range require the presence of light mediators, whose coupling to the Standard Model facilitates annihilation in the early universe and allows for the correct thermal relic abundance. The mediators in turn provide a production channel for dark matter at colliders or fixed targets, and as a consequence the neutrino beams generated at fixed targets may contain an additional beam of light dark matter. The signatures of this beam include elastic scattering off electrons or nucleons in the (near-)detector, which closely mimics the neutral current scattering of neutrinos. We determine the event rate at modern fixed target facilities and the ensuing sensitivity to sub-GeV dark matter.Comment: 18 pages, 13 figures, revtex4-

    Selfish Dark Matter

    Full text link
    We present a mechanism where a particle asymmetry in one sector is used to generate an asymmetry in another sector. The two sectors are not coupled through particle number violating interactions and are not required to be in thermal contact with each other. When this mechanism is applied to baryogenesis in asymmetric dark matter models, we find that the dark matter particles can be extremely light, e.g. much lighter than an eV, and that in some cases there is no need to annihilate away the symmetric component of dark matter. We discuss a concrete realization of the mechanism with signals in direct detection, at the LHC, at BB-factories or future beam dump experiments.Comment: 18+5 pages, 2 figures; Journal version: Added references, small changes to the free-streaming length estimate

    Two Loop R-Symmetry Breaking

    Full text link
    We analyze two loop quantum corrections for pseudomoduli in O'Raifeartaigh like models. We argue that R-symmetry can be spontaneously broken at two loop in non supersymmetric vacua. We provide a basic example with this property. We discuss on phenomenological applications.Comment: 13 pages, 5 figures, JHEP3.cls, reference adde

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Surveying Pseudomoduli: the Good, the Bad and the Incalculable

    Full text link
    We classify possible types of pseudomoduli which arise when supersymmetry is dynamically broken in infrared-free low-energy theories. We show that, even if the pseudomoduli potential is generated only at higher loops, there is a regime where the potential can be simply determined from a combination of one-loop running data. In this regime, we compute whether the potential for the various types of pseudomoduli is safe, has a dangerous runaway to the UV cutoff of the low-energy theory, or is incalculable. Our results are applicable to building new models of supersymmetry breaking. We apply the results to survey large classes of models.Comment: 34 page

    R-symmetry and Supersymmetry Breaking at Finite Temperature

    Get PDF
    We analyze the spontaneous U(1)RU(1)_R symmetry breaking at finite temperature for the simple O'Raifeartaigh-type model introduced in [1] in connection with spontaneous supersymmetry breaking. We calculate the finite temperature effective potential (free energy) to one loop order and study the thermal evolution of the model. We find that the R-symmetry breaking occurs through a second order phase transition. Its associated meta-stable supersymmetry breaking vacuum is thermodynamically favored at high temperatures and the model remains trapped in this state by a potential barrier, as the temperature lowers all the way until T=0.Comment: 19 pages, 4 figures - Minor revisions, references added. To appear in JHE

    On the Thermal History of Calculable Gauge Mediation

    Full text link
    Many messenger models with realistic gaugino masses are based on meta-stable vacua. In this work we study the thermal history of some of these models. Analyzing R-symmetric models, we point out that while some of the known messenger models clearly prefer the supersymmetric vacuum, there is a vast class of models where the answer depends on the initial conditions. Along with the vacuum at the origin, the high temperature thermal potential also possesses a local minimum far away from the origin. This vacuum has no analog at zero temperature. The first order phase transition from this vacuum into the supersymmetric vacuum is parametrically suppressed, and the theory, starting from that vacuum, is likely to evolve to the desired gauge-mediation vacuum. We also comment on the thermal evolution of models without R-symmetry.Comment: 22 pages. V2: Comments on the SM effects added. Minor corrections. Reference added. Valuable discussion with S. Abel, J. Jaeckel and V. Khoze acknowledged. V3: Types of EOGM explicitly defined in the introduction. Discussions about the phase transitions expanded. Typo corrected. Journal versio

    Decays of metastable vacua in SQCD

    Full text link
    The decay rates of metastable SQCD vacua in ISS-type models, both towards supersymmetric vacua as well as towards other nonsupersymmetric configurations arising in theories with elementary spectators, are estimated numerically in the semiclassical approximation by computing the corresponding multifield bounce configurations. The scaling of the bounce action with respect to the most relevant dimensionless couplings and ratios of scales is analyzed. In the case of the decays towards the susy vacua generated by nonperturbative effects, the results confirm previous analytical estimations of this scaling, obtained by assuming a triangular potential barrier. The decay rates towards susy vacua generated by R-symmetry breaking interactions turn out to be more than sufficiently suppressed for the phenomenologically relevant parameter range, and their behavior in this regime differs from analytic estimations valid for parametrically small scale ratios. It is also shown that in models with spectator fields, even though the decays towards vacua involving nonzero spectator VEVs don't have a strong parametric dependence on the scale ratios, the ISS vacuum can still be made long-lived in the presence of R-symmetry breaking interactions.Comment: 22 pages, 7 figure

    Molecular Physics

    Get PDF
    Contains reports on two research projects.F.L. Freidman ChairNational Institutes of Health (Grant AM 25535)Whitaker FoundationInternational Business Machines, Inc
    corecore