2,924 research outputs found
Coseismic horizontal slip revealed by sheared clastic dikes in the Dead Sea Basin
Peer reviewedPostprin
Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators
We study the dynamics of a pair of parametrically-driven coupled nonlinear
mechanical resonators of the kind that is typically encountered in applications
involving microelectromechanical and nanoelectromechanical systems (MEMS &
NEMS). We take advantage of the weak damping that characterizes these systems
to perform a multiple-scales analysis and obtain amplitude equations,
describing the slow dynamics of the system. This picture allows us to expose
the existence of homoclinic orbits in the dynamics of the integrable part of
the slow equations of motion. Using a version of the high-dimensional Melnikov
approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are
able to obtain explicit parameter values for which these orbits persist in the
full system, consisting of both Hamiltonian and non-Hamiltonian perturbations,
to form so-called Shilnikov orbits, indicating a loss of integrability and the
existence of chaos. Our analytical calculations of Shilnikov orbits are
confirmed numerically
Broadcasting in Noisy Radio Networks
The widely-studied radio network model [Chlamtac and Kutten, 1985] is a
graph-based description that captures the inherent impact of collisions in
wireless communication. In this model, the strong assumption is made that node
receives a message from a neighbor if and only if exactly one of its
neighbors broadcasts.
We relax this assumption by introducing a new noisy radio network model in
which random faults occur at senders or receivers. Specifically, for a constant
noise parameter , either every sender has probability of
transmitting noise or every receiver of a single transmission in its
neighborhood has probability of receiving noise.
We first study single-message broadcast algorithms in noisy radio networks
and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in
the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007
does not. We give a modified version of the algorithm of Gasieniec et al., 2007
that is robust to sender and receiver faults, and extend both this modified
algorithm and the Decay algorithm to robust multi-message broadcast algorithms.
We next investigate the extent to which (network) coding improves throughput
in noisy radio networks. We address the previously perplexing result of Alon et
al. 2014 that worst case coding throughput is no better than worst case routing
throughput up to constants: we show that the worst case throughput performance
of coding is, in fact, superior to that of routing -- by a
gap -- provided receiver faults are introduced. However, we show that any
coding or routing scheme for the noiseless setting can be transformed to be
robust to sender faults with only a constant throughput overhead. These
transformations imply that the results of Alon et al., 2014 carry over to noisy
radio networks with sender faults.Comment: Principles of Distributed Computing 201
A Possible Hidden Population of Spherical Planetary Nebulae
We argue that relative to non-spherical planetary nebulae (PNs), spherical
PNs are about an order of magnitude less likely to be detected, at distances of
several kiloparsecs. Noting the structure similarity of halos around
non-spherical PNs to that of observed spherical PNs, we assume that most
unobserved spherical PNs are also similar in structure to the spherical halos
around non-spherical PNs. The fraction of non-spherical PNs with detected
spherical halos around them, taken from a recent study, leads us to the claim
of a large (relative to that of non-spherical PNs) hidden population of
spherical PNs in the visible band. Building a toy model for the luminosity
evolution of PNs, we show that the claimed detection fraction of spherical PNs
based on halos around non-spherical PNs, is compatible with observational
sensitivities. We use this result to update earlier studies on the different PN
shaping routes in the binary model. We estimate that ~30% of all PNs are
spherical, namely, their progenitors did not interact with any binary
companion. This fraction is to be compared with the ~3% fraction of observed
spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate
elliptical shape to the interaction of their progenitors with planets, while
\~55% of all PNs owe their elliptical or bipolar shapes to the interaction of
their progenitors with stellar companions.Comment: AJ, in pres
Game On? Smoking Cessation Through the Gamification of mHealth: A Longitudinal Qualitative Study
BACKGROUND: Finding ways to increase and sustain engagement with mHealth interventions has become a challenge during application development. While gamification shows promise and has proven effective in many fields, critical questions remain concerning how to use gamification to modify health behavior. OBJECTIVE: The objective of this study is to investigate how the gamification of mHealth interventions leads to a change in health behavior, specifically with respect to smoking cessation. METHODS: We conducted a qualitative longitudinal study using a sample of 16 smokers divided into 2 cohorts (one used a gamified intervention and the other used a nongamified intervention). Each participant underwent 4 semistructured interviews over a period of 5 weeks. Semistructured interviews were also conducted with 4 experts in gamification, mHealth, and smoking cessation. Interviews were transcribed verbatim and thematic analysis undertaken. RESULTS: Results indicated perceived behavioral control and intrinsic motivation acted as positive drivers to game engagement and consequently positive health behavior. Importantly, external social influences exerted a negative effect. We identified 3 critical factors, whose presence was necessary for game engagement: purpose (explicit purpose known by the user), user alignment (congruency of game and user objectives), and functional utility (a well-designed game). We summarize these findings in a framework to guide the future development of gamified mHealth interventions. CONCLUSIONS: Gamification holds the potential for a low-cost, highly effective mHealth solution that may replace or supplement the behavioral support component found in current smoking cessation programs. The framework reported here has been built on evidence specific to smoking cessation, however it can be adapted to health interventions in other disease categories. Future research is required to evaluate the generalizability and effectiveness of the framework, directly against current behavioral support therapy interventions in smoking cessation and beyond
A Passive Phase Noise Cancellation Element
We introduce a new method for reducing phase noise in oscillators, thereby
improving their frequency precision. The noise reduction device consists of a
pair of coupled nonlinear resonating elements that are driven parametrically by
the output of a conventional oscillator at a frequency close to the sum of the
linear mode frequencies. Above the threshold for parametric response, the
coupled resonators exhibit self-oscillation at an inherent frequency. We find
operating points of the device for which this periodic signal is immune to
frequency noise in the driving oscillator, providing a way to clean its phase
noise. We present results for the effect of thermal noise to advance a broader
understanding of the overall noise sensitivity and the fundamental operating
limits
Nanometer-scale Fluorescence Resonance Optical Waveguides
The telecommunications revolution has created a strong motivation to build photonic devices of ever smaller size and higher density. Using photosynthetic structures found in nature as an inspiration, we synthesized artificial structures that act like diffusive waveguides. These waveguides use FRET to transport energy, and we demonstrated the idea with 3- and 5-fluorophore structures which utilize DNA as a scaffold. A quantitative model that explains the results and provides the mechanism behind the energy transfer is also presented
Dynamical CP Violation and Flavour-Changing Processes
We investigate the phenomenological constraints on a model where, besides the
standard model Higgs sector, there is an effective new strong interaction
acting on the third generation of quarks and characterized by a -like
term. This term induces electroweak symmetry breaking and leads to
dynamical spontaneous CP violation. We show that the constraints coming from K
physics and the electric dipole moment of the neutron impose that the new
physics scale should be of the order of 35 TeV. Contrary to naive expectations,
the predictions of the model for B physics are very close to the standard model
ones. The main differences appear in processes involving the up quarks such as
mixing and in the electric dipole moment of the neutron, which
should be close to the experimental limit. Possible deviations from the
standard model predictions for CP asymmetries in B decays are also considered.Comment: LaTeX, 25 pages, 4 figure
Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Image-Based Patient‐Specific In Silico Modeling
Background: Mixed valvular disease (MVD), mitral regurgitation (MR) from pre‐existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre‐existing MVD, PVL, LV, and post‐TAVR recovery is meager.
Methods and Results: We quantified the effects of MVD on valvular‐ventricular hemodynamics using an image‐based patient‐specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload post‐TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on mitral valve and is one of the main contributors in worsening of MR post‐TAVR. MR worsened in 32 patients post‐TAVR and did not improve in 18 other patients.
Conclusions: PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post‐TAVR, most MVD patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with PVL, but without that pre‐existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its exacerbation by PVL may hinder the success of TAVR
- …
