2,924 research outputs found

    Coseismic horizontal slip revealed by sheared clastic dikes in the Dead Sea Basin

    Get PDF
    Peer reviewedPostprin

    Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators

    Full text link
    We study the dynamics of a pair of parametrically-driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical and nanoelectromechanical systems (MEMS & NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Shilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Shilnikov orbits are confirmed numerically

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    A Possible Hidden Population of Spherical Planetary Nebulae

    Full text link
    We argue that relative to non-spherical planetary nebulae (PNs), spherical PNs are about an order of magnitude less likely to be detected, at distances of several kiloparsecs. Noting the structure similarity of halos around non-spherical PNs to that of observed spherical PNs, we assume that most unobserved spherical PNs are also similar in structure to the spherical halos around non-spherical PNs. The fraction of non-spherical PNs with detected spherical halos around them, taken from a recent study, leads us to the claim of a large (relative to that of non-spherical PNs) hidden population of spherical PNs in the visible band. Building a toy model for the luminosity evolution of PNs, we show that the claimed detection fraction of spherical PNs based on halos around non-spherical PNs, is compatible with observational sensitivities. We use this result to update earlier studies on the different PN shaping routes in the binary model. We estimate that ~30% of all PNs are spherical, namely, their progenitors did not interact with any binary companion. This fraction is to be compared with the ~3% fraction of observed spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate elliptical shape to the interaction of their progenitors with planets, while \~55% of all PNs owe their elliptical or bipolar shapes to the interaction of their progenitors with stellar companions.Comment: AJ, in pres

    Game On? Smoking Cessation Through the Gamification of mHealth: A Longitudinal Qualitative Study

    Get PDF
    BACKGROUND: Finding ways to increase and sustain engagement with mHealth interventions has become a challenge during application development. While gamification shows promise and has proven effective in many fields, critical questions remain concerning how to use gamification to modify health behavior. OBJECTIVE: The objective of this study is to investigate how the gamification of mHealth interventions leads to a change in health behavior, specifically with respect to smoking cessation. METHODS: We conducted a qualitative longitudinal study using a sample of 16 smokers divided into 2 cohorts (one used a gamified intervention and the other used a nongamified intervention). Each participant underwent 4 semistructured interviews over a period of 5 weeks. Semistructured interviews were also conducted with 4 experts in gamification, mHealth, and smoking cessation. Interviews were transcribed verbatim and thematic analysis undertaken. RESULTS: Results indicated perceived behavioral control and intrinsic motivation acted as positive drivers to game engagement and consequently positive health behavior. Importantly, external social influences exerted a negative effect. We identified 3 critical factors, whose presence was necessary for game engagement: purpose (explicit purpose known by the user), user alignment (congruency of game and user objectives), and functional utility (a well-designed game). We summarize these findings in a framework to guide the future development of gamified mHealth interventions. CONCLUSIONS: Gamification holds the potential for a low-cost, highly effective mHealth solution that may replace or supplement the behavioral support component found in current smoking cessation programs. The framework reported here has been built on evidence specific to smoking cessation, however it can be adapted to health interventions in other disease categories. Future research is required to evaluate the generalizability and effectiveness of the framework, directly against current behavioral support therapy interventions in smoking cessation and beyond

    A Passive Phase Noise Cancellation Element

    Get PDF
    We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction device consists of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a conventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric response, the coupled resonators exhibit self-oscillation at an inherent frequency. We find operating points of the device for which this periodic signal is immune to frequency noise in the driving oscillator, providing a way to clean its phase noise. We present results for the effect of thermal noise to advance a broader understanding of the overall noise sensitivity and the fundamental operating limits

    Nanometer-scale Fluorescence Resonance Optical Waveguides

    Get PDF
    The telecommunications revolution has created a strong motivation to build photonic devices of ever smaller size and higher density. Using photosynthetic structures found in nature as an inspiration, we synthesized artificial structures that act like diffusive waveguides. These waveguides use FRET to transport energy, and we demonstrated the idea with 3- and 5-fluorophore structures which utilize DNA as a scaffold. A quantitative model that explains the results and provides the mechanism behind the energy transfer is also presented

    Dynamical CP Violation and Flavour-Changing Processes

    Get PDF
    We investigate the phenomenological constraints on a model where, besides the standard model Higgs sector, there is an effective new strong interaction acting on the third generation of quarks and characterized by a θ\theta-like term. This θ\theta term induces electroweak symmetry breaking and leads to dynamical spontaneous CP violation. We show that the constraints coming from K physics and the electric dipole moment of the neutron impose that the new physics scale should be of the order of 35 TeV. Contrary to naive expectations, the predictions of the model for B physics are very close to the standard model ones. The main differences appear in processes involving the up quarks such as D0Dˉ0D^0-\bar{D}^0 mixing and in the electric dipole moment of the neutron, which should be close to the experimental limit. Possible deviations from the standard model predictions for CP asymmetries in B decays are also considered.Comment: LaTeX, 25 pages, 4 figure

    Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Image-Based Patient‐Specific In Silico Modeling

    Get PDF
    Background: Mixed valvular disease (MVD), mitral regurgitation (MR) from pre‐existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre‐existing MVD, PVL, LV, and post‐TAVR recovery is meager. Methods and Results: We quantified the effects of MVD on valvular‐ventricular hemodynamics using an image‐based patient‐specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload post‐TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on mitral valve and is one of the main contributors in worsening of MR post‐TAVR. MR worsened in 32 patients post‐TAVR and did not improve in 18 other patients. Conclusions: PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post‐TAVR, most MVD patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with PVL, but without that pre‐existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its exacerbation by PVL may hinder the success of TAVR
    corecore