526 research outputs found

    Visualising linked health data to explore health events around preventable hospitalisations in NSW Australia

    Get PDF
    Objective: To explore patterns of health service use in the lead-up to, and following, admission for a ‘preventable’ hospitalisation. Setting: 266 950 participants in the 45 and Up Study, New South Wales (NSW) Australia Methods: Linked data on hospital admissions, general practitioner (GP) visits and other health events were used to create visual representations of health service use. For each participant, health events were plotted against time, with different events juxtaposed using different markers and panels of data. Various visualisations were explored by patient characteristics, and compared with a cohort of non-admitted participants matched on sociodemographic and health characteristics. Health events were displayed over calendar year and in the 90 days surrounding first preventable hospitalisation. Results: The visualisations revealed patterns of clustering of GP consultations in the lead-up to, and following, preventable hospitalisation, with 14% of patients having a consultation on the day of admission and 27% in the prior week. There was a clustering of deaths and other hospitalisations following discharge, particularly for patients with a long length of stay, suggesting patients may have been in a state of health deterioration. Specialist consultations were primarily clustered during the period of hospitalisation. Rates of all health events were higher in patients admitted for a preventable hospitalisation than the matched non-admitted cohort. Conclusions: We did not find evidence of limited use of primary care services in the lead-up to a preventable hospitalisation, rather people with preventable hospitalisations tended to have high levels of engagement with multiple elements of the healthcare system. As such, preventable hospitalisations might be better used as a tool for identifying sicker patients for managed care programmes. Visualising longitudinal health data was found to be a powerful strategy for uncovering patterns of health service use, and such visualisations have potential to be more widely adopted in health services research

    Using weighted hospital service area networks to explore variation in preventable hospitalization

    Get PDF
    Objective: To demonstrate the use of multiple-membership multilevel models, which analytically structure patients in a weighted network of hospitals, for exploring between-hospital variation in preventable hospitalizations. Data Sources: Cohort of 267,014 people aged over 45 in NSW, Australia. Study Design: Patterns of patient flow were used to create weighted hospital service area networks (weighted-HSANs) to 79 large public hospitals of admission. Multiple-membership multilevel models on rates of preventable hospitalization, modeling participants structured within weighted-HSANs, were contrasted with models clustering on 72 hospital service areas (HSAs) that assigned participants to a discrete geographic region. Data Collection/Extraction Methods: Linked survey and hospital admission data. Principal Findings: Between-hospital variation in rates of preventable hospitalization was more than two times greater when modeled using weighted-HSANs rather than HSAs. Use of weighted-HSANs permitted identification of small hospitals with particularly high rates of admission and influenced performance ranking of hospitals, particularly those with a broadly distributed patient base. There was no significant association with hospital bed occupancy. Conclusion: Multiple-membership multilevel models can analytically capture information lost on patient attribution when creating discrete health care catchments. Weighted-HSANs have broad potential application in health services research and can be used across methods for creating patient catchments

    The effect of oxide precipitates on minority carrier lifetime in n-type silicon

    Get PDF
    Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon

    Sociodemographic and Health Characteristics, Rather Than Primary Care Supply, are Major Drivers of Geographic Variation in Preventable Hospitalizations in Australia

    Get PDF
    ACKNOWLEDGMENTS: The authors thank the many thousands of people participating in the 45 and Up Study. The authors also thank the Sax Institute, the NSW Ministry of Health, and the NSW Register of Births, Deaths, and Marriages for allowing access to the data, and the Centre for Health Record Linkage for conducting the probabilistic linkage of records.Peer reviewedPublisher PD

    Quantitative copper measurement in oxidized p-type silicon wafers using microwave photoconductivity decay

    Get PDF
    We propose a method to measure trace copper contamination in p-type silicon using the microwave photoconductivity decay (μ-PCD) technique. The method is based on the precipitation of interstitial copper, activated by high-intensity light, which results in enhanced minority carrier recombination activity. We show that there is a quantitative correlation between the enhanced recombination rate and the Cu concentration by comparing μ-PCD measurements with transient ion drift and total reflection x-ray fluorescence measurements. The results indicate that the method is capable of measuring Cu concentrations down to 10exp10cm−3. There are no limitations to wafer storage time if corona charge is used on the oxidized wafer surfaces as the charge prevents copper outdiffusion. We briefly discuss the role of oxide precipitates both in the copperprecipitation and in the charge carrier recombination processes.Peer reviewe

    The challenge of the identification of a new mineral species: example "Pezzottaite"

    Get PDF
    In 2002, a new gem mineral of commercial importance was discovered. In accordance with the need for all new mineral discoveries to be scientifically characterized (see Nickel and Grice, 1998), the gemological community anxiously awaited the results of tests to positively identify the new mineral (Hawthorne et al., 2003, Hawthorne et al., submitted and Laurs et al., 2003). This period of analysis brought into play the question: Exactly what procedures are necessary for the positive characterization of a new mineral

    BAAD: a Biomass And Allometry Database for woody plants

    Get PDF
    Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub‐sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross‐section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world\u27s vegetation

    Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations

    Get PDF
    Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models.National Science Foundation (U.S.) (Research Experience for Undergraduates stipend)Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Graduate Research Fellowship Program)Massachusetts Institute of Technology. Presidential FellowshipEugene V. and Clare Thaw Charitable TrustEngineering and Physical Sciences Research CouncilNational Science Foundation (U.S.) (PHY0202180)Colorado College (Venture Grant Program

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore