1,228 research outputs found

    A photoreceptor's on-off switch.

    Get PDF

    Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression.

    Get PDF
    Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators

    Donor characteristics and the allocation of aid to climate mitigation finance

    Get PDF
    We make use of a panel dataset of 22 donor countries from 1998 to 2009 to examine the links between donor characteristics and the share of overseas development assistance allocated to climate mitigation finance. We find that donors with a larger green domestic budget tend to allocate a smaller portion of overseas aid to mitigation finance (possibly as a result of a competing interest between spending on domestic environmental projects and international climate projects). The opposite holds for donor countries with better institutions (governance) that have ratified the Kyoto Protocol. We also find important discrepancies when comparing the effects of donor characteristics on committed versus disbursed mitigation finance (as a share of aid). For the latter, only commitment to the Kyoto Protocol appears to be of high statistical significance

    Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light.

    Get PDF
    Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is an important feature. Low R:FR-induced phytochrome inactivation leads to the accumulation and activation of the transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) 4, 5, and 7 and subsequent expression of their growth-mediating targets [2, 3]. When true shading occurs, transmitted light is especially depleted in red and blue (B) wavelengths, due to absorption by chlorophyll [4]. Although the reduction of blue wavelengths alone does not occur in nature, long-term exposure to low B light induces a shade avoidance-like response that is dependent on the cryptochrome photoreceptors and the transcription factors PIF4 and PIF5 [5-7]. We show in Arabidopsis thaliana that low B in combination with low R:FR enhances petiole elongation similar to vegetation shade, providing functional context for a low B response in plant competition. Low B potentiates the low R:FR response through PIF4, PIF5, and PIF7, and it involves increased PIF5 abundance and transcriptional changes. Low B attenuates a low R:FR-induced negative feedback loop through reduced gene expression of negative regulators and reduced HFR1 levels. The enhanced response to combined phytochrome and cryptochrome inactivation shows how multiple light cues can be integrated to fine-tune the plant's response to a changing environment

    The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning.

    Get PDF
    In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins

    Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.

    Get PDF
    Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Improving "color rendering" of LED lighting for the growth of lettuce

    Get PDF
    Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m−2·s−1 for a 16 hd−1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2-3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth

    UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis.

    Get PDF
    Sun-loving plants perceive the proximity of potential light-competing neighboring plants as a reduction in the red:far-red ratio (R:FR), which elicits a suite of responses called the "shade avoidance syndrome" (SAS). Changes in R:FR are primarily perceived by phytochrome B (phyB), whereas UV-B perceived by UV RESISTANCE LOCUS 8 (UVR8) elicits opposing responses to provide a counterbalance to SAS, including reduced shade-induced hypocotyl and petiole elongation. Here we show at the genome-wide level that UVR8 broadly suppresses shade-induced gene expression. A subset of this gene regulation is dependent on the UVR8-stabilized atypical bHLH transcription regulator LONG HYPOCOTYL IN FAR-RED 1 (HFR1), which functions in part redundantly with PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1). In parallel, UVR8 signaling decreases protein levels of the key positive regulators of SAS, namely the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5, in a COP1-dependent but HFR1-independent manner. We propose that UV-B antagonizes SAS via two mechanisms: degradation of PIF4 and PIF5, and HFR1- and PIL1-mediated inhibition of PIF4 and PIF5 function. This work highlights the importance of typical and atypical bHLH transcription regulators for the integration of light signals from different photoreceptors and provides further mechanistic insight into the crosstalk of UVR8 signaling and SAS

    Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives

    Get PDF
    In many countries around the world impacts of climate change are assessed and adaptation options identified. We describe an approach for a qualitative and quantitative assessment of adaptation options to respond to climate change in the Netherlands. The study introduces an inventory and ranking of adaptation options based on stakeholder analysis and expert judgement, and presents some estimates of incremental costs and benefits. The qualitative assessment focuses on ranking and prioritisation of adaptation options. Options are selected and identified and discussed by stakeholders on the basis of a sectoral approach, and assessed with respect to their importance, urgency and other characteristics by experts. The preliminary quantitative assessment identifies incremental costs and benefits of adaptation options. Priority ranking based on a weighted sum of criteria reveals that in the Netherlands integrated nature and water management and risk based policies rank high, followed by policies aiming at 'climate proof' housing and infrastructure
    corecore