95 research outputs found
Recommended from our members
Real time visualization of Quantum Molecular Dynamics
this demonstration displays results of a Quantum Molecular Dynamics (QMD) simulation of the metal cluster Li{sub 6} running on the Intel Touchstone Delta at Caltech
Use of pleopod morphology to determine sexual dimorphism and maturity in hermit crabs: Isocheles sawayai as a model
A Review of Studies Dealing with Tree Rings and Rockfall Activity: The Role of Dendrogeomorphology in Natural Hazard Research
Shell occupation by the South Atlantic endemic hermit crab Loxopagurus loxochelis (Moreira, 1901) (Anomura: Diogenidae)
The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV) with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals.Universidade Estadual Paulista - UNESP Departamento de Zoologia Instituto de BiociênciasUniversidade Federal do Rio Grande do Norte Grupo de Estudos de Ecologia e Fisiologia de Animais Aquáticos - GEEFAAUniversidade Estadual do Sudoeste da Bahia Departamento de Ciências NaturaisUniversidade Estadual de Londrina - UEL Departamento de Biologia Animal e VegetalUniversidade Estadual do Piauí - UESPIUniversidade Estadual Paulista - UNESP Departamento de Zoologia Instituto de Biociência
Mechanistic and Physiological Implications of the Interplay among Iron–Sulfur Clusters in [FeFe]-Hydrogenases. A QM/MM Perspective
Mineral carbonation as a design project for green chemical engineering education
Abstract
Accelerated mineral carbonation is a promising CO2 sequestration technology that is strongly linked to concepts of sustainability and Green Chemistry, and its process requirements apply principles of reaction kinetics, transport phenomena, and materials characterization. The present work aimed to develop educational tools for including accelerated mineral carbonation in chemical engineering curricula. To this end, an experimental investigation laboratory procedure and a design project outline have been conceived. As a way to further engage students in this learning experience, the process conditions for the laboratory work are varied between groups of students, and the experimental data obtained are pooled to be used by every group for the subsequent design exercise. This is meant to give students motivation to generate accurate data that they knew would be useful for the entire class and, at the same time, provide students with the opportunity to use data generated by colleagues, much in the same way the design work is done in the industry. In the design project, students use the experimental data obtained by themselves and classmates on the accelerated mineral carbonation of wollastonite, to determine if this is a feasible process for industry to sequester carbon dioxide, in view of mitigating climate change. Also, they use the experimental data, acquired using a range of process conditions, to study the effect of the process variables (CO2 pressure and mixing rate) on the carbonation kinetics and mass transfer rate. The focus of our previously published article was on the experimental investigation, while the focus of this conference paper is on the design project.</jats:p
Shell occupation by the endemic western Atlantic hermit crab Isocheles sawayai (Diogenidae) from Caraguatatuba, Brazil
The aim of this study was to characterize the pattern of shell occupation by the hermit crab Isocheles sawayai Forest and Saint-Laurent, 1968, from the Caraguatatuba region. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from systematized collections that were conducted monthly from July 2001 to June 2003. A total of 373 individuals were captured (297 males, 41 non-ovigerous females, 25 ovigerous females and 10 intersexes), occupying 17 species of gastropod shells. Stramonita haemastoma (Linnaeus, 1767) (49.87%) was the significantly most occupied species (χ2 = 89.30; P < 0.05) followed, with no significant difference, by Phalium granulatum (Born, 1778) (11.53%), Polinices hepaticus (Roding, 1798) (8.31%) and Cymatium parthenopeum (von Salis, 1793) (6.97%). All the morphometric relationships between hermit crabs and occupied shells showed high (r > 0.68) and significant (P < 0.05) correlation values, which is an important indication that in this I. sawayai population the animals occupied adequate shells. The high number of occupied shell species and relative plasticity indicated that, for the studied population, occupation is influenced by the shell availability
Dendrogeomorphology in landslide analysis. State of art
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Survival Response of Larix Sibirica to the Tunguska Explosion
The disastrous Tunguska explosion (TE) in 1908 uprooted trees in a radial pattern. Several trees in this area survived and kept growing in the post-Tunguska environment. We collected samples from surviving trees (14 and 131 years old at the time of the TE) that lived until collection in 2008 and another sample from a control tree farther from the blast epicenter (germination in 1928), which were analyzed by X-ray fluorescence (XRF) and prompt gamma neutron activation analysis. Chemical composition of xylem tracheids of the surviving trees revealed several patterns potentially related to the TE. A calcium peak is associated with the 1908 ring in both of the exposed trees, but additional high concentrations in adjacent rings could represent enhanced translocation of Ca over the whole sapwood as a response to defoliation from the TE. Sr and Mn anomalies near 1908 appeared in one exposed tree but not in the other. High-resolution XRF indicates Ca as well as Zn anomalies are primarily located in the earlywood of the rings, whereas peaks in Mn, Zn and Cu are more associated with the latewood. A directional response was evidenced by a wider zone of elevated Ca in the rings on the southern side toward the airblast, which might have experienced the greatest defoliation and perhaps enhanced root damage as the tree was rocked by the pressure wave. The TE event in the middle of the 1908 growing season must have triggered tree responses to deliver more nutritive resources to the crown in order to hasten restoring new leaves in the crown and to aid in structural repair. © 2017 by The Tree-Ring Society.This item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at [email protected]
- …
