118 research outputs found
The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes
CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage
Phase II study of UFT with leucovorin and irinotecan (TEGAFIRI): first-line therapy for metastatic colorectal cancer
This phase II trial was performed to evaluate the efficacy and tolerability of oral tegafur–uracil (UFT®) with leucovorin (LV) combined with intravenous (i.v.) irinotecan every 3 weeks (TEGAFIRI) as first-line treatment for patients with metastatic colorectal cancer (mCRC). Patients received oral UFT 250 mg m−2 day−1 and LV 90 mg day−1 in three divided daily doses for 14 days followed by a 1-week rest and i.v. irinotecan 250 mg m−2 as a 90-min infusion every 3 weeks. Tumour responses, assessed every two cycles using RECIST criteria, were reviewed by an independent review committee. In 52 evaluable patients, the best overall response rate was 33% (95% confidence intervals (CI) 20–47%; 1 complete and 16 partial responses). The median time to progression was 5.4 months (95% CI 3.02–7.52 months) and median overall survival was 14.9 months (11.73–17.97 months). A total of 307 cycles were administered, with a median number of five cycles per patient (range: 1–10). The most common grade 3/4 toxicities were neutropenia (25% of patients), diarrhoea (22%), vomiting (11%) and anaemia (11%). The TEGAFIRI regimen is a feasible, well-tolerated and convenient treatment option for patients with non-resectable mCRC
Is there loss or qualitative changes in the expression of thyroid peroxidase protein in thyroid epithelial cancer?
There is disagreement concerning the expression of thyroid peroxidase (TPO) in thyroid cancer, some studies finding qualitative as well as quantitative differences compared to normal tissue. To investigate TPO protein expression and its antigenic properties, TPO was captured from a solubilizate of thyroid microsomes by a panel of murine anti-TPO monoclonal antibodies and detected with a panel of anti-human TPO IgGκ Fab. TPO protein expression in 30 samples of malignant thyroid tissue was compared with TPO from adjacent normal tissues. Virtual absence of TPO expression was observed in 8 cases. In the remaining 22 malignant thyroid tumours the TPO protein level varied considerably from normal to nearly absent when compared to normal thyroid tissue or tissues from patients with Graves' disease (range less than 0.5 to more than 12.5 μg mg−1 of protein). When expressed TPO displayed similar epitopes, to that of TPO from Graves' disease tissue. The results obtained by the TPO capturing method were confirmed by SDS-PAGE and Western blot analysis with both microsomes and their solubilizates. The present results show that in about two-thirds of differentiated thyroid carcinomas, TPO protein is expressed, albeit to a more variable extent than normal; when present, TPO in malignant tissues is immunologically normal. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Quality-of-life findings from a randomised phase-III study of XELOX vs FOLFOX-6 in metastatic colorectal cancer
Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study
<p>Abstract</p> <p>Background</p> <p>Sporadic colorectal cancers (CRC) are multifactorial diseases resulting from the combined effects of numerous genetic, environmental and behavioral risk factors. Genetic association studies have suggested low-penetrance alleles of extremely varied genes to be involved in susceptibility to CRC in Caucasian populations.</p> <p>Methods</p> <p>Through a large genetic association study based on 1023 patients with sporadic CRC and 1121 controls, we tested a panel of these low-penetrance alleles to find out whether they could determine "genotypic profiles" at risk for CRC among individuals of the French population. We examined 52 polymorphisms of 35 genes – drawn from inflammation, xenobiotic detoxification, one-carbon, insulin signaling, and DNA repair pathways – for their possible contribution to colorectal carcinogenesis. The risk of cancer associated with these polymorphisms was assessed by calculation of odds ratios (OR) using multivariate analyses and logistic regression.</p> <p>Results</p> <p>Whereas all these polymorphisms had previously been found to be associated with CRC risk, especially in Caucasian populations, we were able to replicate the association for only five of them. Three SNPs were shown to increase CRC risk: <it>PTGS1 </it>c.639C>A (p.Gly213Gly), <it>IL8 </it>c.-352T>A, and <it>MTHFR </it>c.1286A>C (p.Ala429Glu). On the contrary, two other SNPs, <it>PLA2G2A </it>c.435+230C>T and <it>PPARG </it>c.1431C>T (p.His477His), were associated with a decrease in CRC risk. Further analyses highlighted genotypic combinations having a greater predisposing effect on CRC (OR 1.97, 95%CI 1.31–2.97, p = 0.0009) than the allelic variants that were examined separately.</p> <p>Conclusion</p> <p>The identification of CRC-predisposing combinations, composed of alleles <it>PTGS1 </it>c.639A, <it>PLA2G2A </it>c.435+230C, <it>PPARG </it>c.1431C, <it>IL8 </it>c.-352A, and <it>MTHFR </it>c.1286C, highlights the importance of inflammatory processes in susceptibility to sporadic CRC, as well as a possible crosstalk between inflammation and one-carbon pathways.</p
P.234 Pratique de la cancérologie digestive par les hépato-gastroentérologues des Hôpitaux Généraux : enquête nationale 2008 FSMAD-FFCD
Global off-line evaluation of the ISBA-TRIP flood model
ISI Document Delivery No.: 918JZ Times Cited: 22 Cited Reference Count: 80 Cited References: Alkama M. R., 2008, CLIM DYNAM, V30, P855 Alkama R, 2010, J HYDROMETEOROL, V11, P583, DOI 10.1175/2010JHM1211.1 Alsdorf DE, 2007, REV GEOPHYS, V45, DOI 10.1029/2006RG000197 Arora VK, 1999, J GEOPHYS RES-ATMOS, V104, P14347, DOI 10.1029/1999JD900200 Arora VK, 1999, J GEOPHYS RES-ATMOS, V104, P30965, DOI 10.1029/1999JD900905 Barnes HH, 1967, US GEOLOGICAL SURVEY, P213 Beighley RE, 2009, HYDROL PROCESS, V23, P1221, DOI 10.1002/hyp.7252 Beven KJ, 1979, HYDROL SCI B, V24, P43, DOI [10.1080/02626667909491834, DOI 10.1080/02626667909491834] Boone A, 2000, J APPL METEOROL, V39, P1544, DOI 10.1175/1520-0450(2000)0392.0.CO;2 Bousquet P, 2006, NATURE, V443, P439, DOI 10.1038/nature05132 Chapelon N, 2002, CLIM DYNAM, V19, P141, DOI 10.1007/s00382-001-0213-9 Coe M. T., 2002, Journal of Geophysical Research, V107, DOI 10.1029/2001JD000740 Coe MT, 2008, HYDROL PROCESS, V22, P2542, DOI 10.1002/hyp.6850 Coe MT, 1998, J GEOPHYS RES-ATMOS, V103, P8885, DOI 10.1029/98JD00347 Cogley J. G., 2003, 20031 TRENT U DEP GE Dadson SJ, 2010, J GEOPHYS RES-ATMOS, V115, DOI 10.1029/2010JD014474 Decharme B, 2007, CLIM DYNAM, V29, P21, DOI 10.1007/s00382-006-0216-7 Decharme B, 2006, CLIM DYNAM, V26, P65, DOI 10.1007/s00382-005-0059-7 Decharme B, 2008, J GEOPHYS RES-ATMOS, V113, DOI 10.1029/2007JD009376 Decharme B, 2010, J HYDROMETEOROL, V11, P601, DOI 10.1175/2010JHM1212.1 Decharme B, 2006, J HYDROMETEOROL, V7, P61, DOI 10.1175/JHM469.1 Decharme B, 2006, CLIM DYNAM, V27, P695, DOI 10.1007/s00382-006-0160-6 Dirmeyer PA, 2000, J CLIMATE, V13, P2900, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Dirmeyer PA, 2001, J HYDROMETEOROL, V2, P89, DOI 10.1175/1525-7541(2001)0022.0.CO;2 Douville H, 2000, J GEOPHYS RES-ATMOS, V105, P14841, DOI 10.1029/1999JD901086 Douville H, 2004, CLIM DYNAM, V22, P429, DOI 10.1007/s00382-003-0386-5 Douville H, 2000, MON WEATHER REV, V128, P1733, DOI 10.1175/1520-0493(2000)1282.0.CO;2 Douville H, 2003, J HYDROMETEOROL, V4, P1044, DOI 10.1175/1525-7541(2003)0042.0.CO;2 Ducharne A, 2003, J HYDROL, V280, P207, DOI 10.1016/S0022-1694(03)00230-0 Durand F, 2010, J EARTH SYST SCI Fan Y, 2011, CLIM DYNAM, V37, P253, DOI 10.1007/s00382-010-0829-8 Fan Y, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2006JD008111 *FAO IIASA ISRIC I, 2009, HARM WORLD SOIL DAT Fekete BM, 2004, J CLIMATE, V17, P294, DOI 10.1175/1520-0442(2004)0172.0.CO;2 Frappart F, 2010, HYDROL EARTH SYST SC, V14, P2443, DOI 10.5194/hess-14-2443-2010 Gedney N, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL020919 Gedney N, 2000, J CLIMATE, V13, P3066, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Guntner A, 2007, WATER RESOUR RES, V43, DOI 10.1029/2006WR005247 Hagemann S, 1998, CLIM DYNAM, V14, P17, DOI 10.1007/s003820050205 Hansen MC, 2000, INT J REMOTE SENS, V21, P1331, DOI 10.1080/014311600210209 Houweling S, 1999, J GEOPHYS RES-ATMOS, V104, P26137, DOI 10.1029/1999JD900428 Knighton E, 1998, FLUVIAL FORMS PROCES Koster RD, 2000, J GEOPHYS RES-ATMOS, V105, P24809, DOI 10.1029/2000JD900327 Koster RD, 2002, J HYDROMETEOROL, V3, P363, DOI 10.1175/1525-7541(2002)0032.0.CO;2 Kouraev AV, 2004, REMOTE SENS ENVIRON, V93, P238, DOI 10.1016/j.rse.2004.07.007 Krinner G, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002597 Lawrence D. M., 2007, CLIM DYNAM, V30, P145, DOI [10.1007/s00382-007-0278-1, DOI 10.1007/S00382-007-0278-1] Leduc C, 1997, J HYDROL, V189, P123 Leduc C, 2001, J HYDROL, V243, P43, DOI 10.1016/S0022-1694(00)00403-0 Lehner B, 2004, J HYDROL, V296, P1, DOI 10.1016/j.jhydrol.2004.03.028 LISTON GE, 1994, J APPL METEOROL, V33, P394, DOI 10.1175/1520-0450(1994)0332.0.CO;2 Lucas-Picher P, 2003, ATMOS OCEAN, V41, P139, DOI 10.3137/ao.410203 Manning R., 1891, I CIVIL ENG IRELAND, V20, P161 Masson V, 2003, J CLIMATE, V16, P1261, DOI 10.1175/1520-0442-16.9.1261 Matthews E., 2000, WETLANDS ATMOSPHERIC, P202 Miguez-Macho G, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2006JD008112 MILLER JR, 1994, J CLIMATE, V7, P914, DOI 10.1175/1520-0442(1994)0072.0.CO;2 Molod A, 2004, J CLIMATE, V17, P3877, DOI 10.1175/1520-0442(2004)0172.0.CO;2 Moody JA, 2002, EARTH SURF PROC LAND, V27, P1251, DOI 10.1002/esp.403 Nash JE, 1970, J HYDROL, V10, P282, DOI [10.1016/0022-1694(70)90255-6, DOI 10.1016/0022-1694(70)90255-6] Ngo-Duc T, 2007, HYDROL EARTH SYST SC, V4, P4389, DOI [10.5194/hessd-4-4389-2007, DOI 10.5194/HESSD-4-4389-2007] Ngo-Duc T, 2005, J GEOPHYS RES-ATMOS, V110, DOI 10.1029/2004JD005434 NOILHAN J, 1989, MON WEATHER REV, V117, P536, DOI 10.1175/1520-0493(1989)1172.0.CO;2 Oki T., 1998, EARTH INTERACT, V2, P1, DOI [10.1175/1087-3562(1998)002<0001:DoTRIP>2.0.CO;2, DOI 10.1175/1087-3562(1998)0022.3.C0;2] Papa F, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2007JD008451 Papa F, 2010, J GEOPHYS RES-ATMOS, V115, DOI 10.1029/2009JD012674 Papa F, 2008, SURV GEOPHYS, V29, P297, DOI 10.1007/s10712-008-9036-0 Papa F, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC006075 Portmann FT, 2010, GLOBAL BIOGEOCHEM CY, V24, DOI 10.1029/2008GB003435 Price JS, 2005, HYDROL PROCESS, V19, P201, DOI 10.1002/hyp.5774 Prigent C, 2001, GEOPHYS RES LETT, V28, P4631, DOI 10.1029/2001GL013263 Prigent C, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2006JD007847 Ringeval B, 2010, GLOBAL BIOGEOCHEM CY, V24, DOI 10.1029/2008GB003354 RODDEL M, 2009, NATURE, V460, P999, DOI DOI 10.1038/NATURE08238 Sacks WJ, 2009, CLIM DYNAM, V33, P159, DOI 10.1007/s00382-008-0445-z Sheffield J, 2006, J CLIMATE, V19, P3088, DOI 10.1175/JCLI3790.1 Shindell DT, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2004GL021900 THOMAS H, 2006, WATER ENVIRON J, V21, P114 Verdin K. L., 1996, P 3 INT C WORKSH INT VOROSMARTY C J, 1989, Global Biogeochemical Cycles, V3, P241, DOI 10.1029/GB003i003p00241 Decharme, B. Alkama, R. Papa, F. Faroux, S. Douville, H. Prigent, C. Papa, Fabrice/D-3695-2009 Papa, Fabrice/0000-0001-6305-6253 French "Agence Nationale pour la Recherche" (ANR); CYMENT of the RTRA STAE Toulouse; "Centre National de Recherches Meteorologiques" (CNRM) of Meteo-France; "Centre National de la Recherche Scientifique" (CNRS) of the French research ministry This work is supported by the program IMPACT-BOREAL of the French "Agence Nationale pour la Recherche" (ANR), the CYMENT project of the RTRA STAE Toulouse, the "Centre National de Recherches Meteorologiques" (CNRM) of Meteo-France, and the "Centre National de la Recherche Scientifique" (CNRS) of the French research ministry. The authors would like to thank Christine Delire (CNRS/CNRM) as well as anonymous reviewers for their useful comments on this study. 22 SPRINGER NEW YORK CLIM DYNAMThis study presents an off-line global evaluation of the ISBA-TRIP hydrological model including a two-way flood scheme. The flood dynamics is indeed described through the daily coupling between the ISBA land surface model and the TRIP river routing model including a prognostic flood reservoir. This reservoir fills when the river height exceeds the critical river bankfull height and vice versa. The flood interacts with the soil hydrology through infiltration and with the overlying atmosphere through precipitation interception and free water surface evaporation. The model is evaluated over a relatively long period (1986-2006) at 1 degrees resolution using the Princeton University 3-hourly atmospheric forcing. Four simulations are performed in order to assess the model sensitivity to the river bankfull height. The evaluation is made against satellite-derived global inundation estimates as well as in situ river discharge observations at 122 gauging stations. First, the results show a reasonable simulation of the global distribution of simulated floodplains when compared to satellite-derived estimates. At basin scale, the comparison reveals some discrepancies, both in terms of climatology and interannual variability, but the results remain acceptable for a simple large-scale model. In addition, the simulated river discharges are improved in term of efficiency scores for more than 50% of the 122 stations and deteriorated for 4% only. Two mechanisms mainly explain this positive impact: an increase in evapotranspiration that limits the annual discharge overestimation found when flooding is not taking into account and a smoothed river peak flow when the floodplain storage is significant. Finally, the sensitivity experiments suggest that the river bankfull depth is potentially tunable according to the river discharge scores to control the accuracy of the simulated flooded areas and its related increase in land surface evaporation. Such a tuning could be relevant at least for climate studies in which the spatio-temporal variations in precipitation are generally poorly represented
Provincia de Río Negro
Fil: Franchi, Mario. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.Fil: Getino, Pablo R. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.Fil: Faroux, Abel J. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.Fil: Folguera, Alicia. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.Fil: Etcheverría, Mariela P. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.Fil: Escosteguy, Leonardo Darío. Ministerio de Planificación Federal, Inversión Pública y Servicios. Secretaría de Minería. Servicio Geológico Minero Argentino (SEGEMAR); Argentina.La Hoja 3966-IV, Choele Choel, abarca parte del sector nordeste de la provincia de Río Negro y está ubicada en una zona de transición entre las cuencas del Colorado y Neuquina. Así que la estratigrafía expuesta en ella resume la historia más moderna de la región, que abarca desde la parte alta del Neógeno hasta la actualidad. Las unidades más antiguas están constituidas en su mayoría por depósitos aluviales del Mioceno tardío-Plioceno temprano, formados por areniscas, limolitas, arcilitas y cineritas, asignados a la Formación Río Negro y por conglomerados polimícticos del Plioceno medio-Pleistoceno (Depósitos fluviales gruesos). La columna se completa con secuencias pleistocenas y holocenas, entre las que se distinguen un delgado manto de calcarenitas, depósitos aluviales pleistocenos, ocho niveles de depósitos de planicie aluvial pertenecientes al río Negro, sedimentos eólicos y depósitos coluviales, aluviales y evaporíticos holocenos. Estructuralmente no se observan rasgos en superficie debido a la gran cubierta sedimentaria moderna. El principal agente modelador del paisaje fue el fluvial mientras que, en forma subordinada, participaron procesos eólicos y de remoción en masa. Se reconocieron dos unidades geomorfológicas bien diferenciadas. Una está constituida por una extensa planicie estructural cubierta por gravas y por varios niveles de antiguas terrazas fluviales que le confieren al paisaje un relieve mesetiforme. La otra unidad comprende la planicie aluvial actual y la terraza más moderna del río Negro. Los recursos mineros más importantes son los depósitos de minerales industriales, en particular de áridos, que se explotan por medio de canteras situadas a la vera de las rutas principales
- …
