44 research outputs found

    Analytical Solution of Thermal Wave Models on Skin Tissue Under Arbitrary Periodic Boundary Conditions

    Full text link

    Adaptive blind image watermarking using edge pixel concentration

    Full text link

    Preparation of Lithium Ion Conductor Glass-Ceramic with High Conductivity for Producing Lithium-Air and all-Solid-State Lithium-Ion Batteries

    No full text
    In this research, new lithium ion conductor glass-ceramics with NASICON-type structure (Li1+x+yAlxCryGe2-x-y (PO4)3, x+y=0.5) were synthesized using melt-quenching method and converted to glass-ceramics through heat treatment. Influence of addition of different concentrations of aluminum and chromium in LiGe2(PO4)3 glass-ceramic was investigated for ionic conduction improvement. Substitution of Ge4+ ions in NASICON structure by Al3+ and Cr3+ ions induced more Li+ ions in A2 vacant sites to obtain charge balance and also changed the unit cell parameters. These two factors led to ionic conductivity improvement of synthesized glass-ceramics. The glass-ceramics were characterized and the amorth structures were investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Differential Scanning Calorimetry (DSC) and Complex Impedance Spectroscopy (CIS). The highest lithium ion conductivity of 8.82×10-3 S/cm was obtained for x=0.4 and y=0.1 (Li1.5Al0.4Cr0.1Ge1.5(PO4)3) crystallized at 850 oC for 8 h with minimum activation energy of 0.267 eV. &nbsp

    Spin transfer torque ferromagnetic resonance induced spin pumping in the Fe/Pd bilayer system

    Full text link
    Inconsistencies in estimates of the spin Hall angle (theta(SH)) and spin diffusion length (lambda(SD)) of nonmagnetic (NM) layers using the spin transfer torque ferromagnetic resonance (ST-FMR) in ferromagnetic FM/NM bilayer structures are attributed to the inverse spin Hall effect (ISHE) and interfacial parameter contributions, interface spin transparency, interfacial anisotropic magnetoresistance, and effective spin-mixing conductance. These contributions in Fe(10 nm)/Pd(2-8 nm) bilayer structures have been probed employing the simultaneous detection of ST-FMR and ISHE in conjunction with in-plane FMR measurements. The interfacial contributions are found to increase with an increase in Pd layer thickness (t(NM)), which can be linked to the spin pumping effect in conjunction with spin backflow. Correcting the t(NM) dependence of the ST-FMR spectra for the interfacial and ISHE contributions prior to estimating theta(SH) and theta(SD) of the Pd layer, the estimated values are found to be 0.10 +/- 0.03 and 5.4 +/- 1.2 nm, respectively.</p
    corecore