199 research outputs found

    Improved thermoelectric properties in ceramic composites based on Ca3Co4O9 and Na2Ca2Nb4O13

    Get PDF
    The oxide materials Ca3Co4O9 and Na2Ca2Nb4O13 were combined in a new ceramic composite with promising synergistic thermoelectric properties. Both compounds show a plate-like crystal shape and similar aspect ratios but the matrix material Ca3Co4O9 with lateral sizes of less than 500 nm is about two orders of magnitude smaller. Uniaxial pressing of the mixed compound powders was used to produce porous ceramics after conventional sintering. Reactions between both compounds and their compositions were thoroughly investigated. In comparison to pure Ca3Co4O9, mixing with low amounts of Na2Ca2Nb4O13 proved to be beneficial for the overall thermoelectric properties. A maximum figure-of-merit of zT = 0.32 at 1073 K and therefore an improvement of about 19% was achieved by the ceramic composites

    Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate

    Get PDF
    Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (Csa´rdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    A comprehensive score reflecting memory-related fMRI activations and deactivations as potential biomarker for neurocognitive aging

    Get PDF
    Older adults and particularly those at risk for developing dementia typically show a decline in episodic memory performance, which has been associated with altered memory network activity detectable via functional magnetic resonance imaging (fMRI). To quantify the degree of these alterations, a score has been developed as a putative imaging biomarker for successful aging in memory for older adults (Functional Activity Deviations during Encoding, FADE; Düzel et al., Hippocampus, 2011; 21: 803–814). Here, we introduce and validate a more comprehensive version of the FADE score, termed FADE-SAME (Similarity of Activations during Memory Encoding), which differs from the original FADE score by considering not only activations but also deactivations in fMRI contrasts of stimulus novelty and successful encoding, and by taking into account the variance of young adults' activations. We computed both scores for novelty and subsequent memory contrasts in a cohort of 217 healthy adults, including 106 young and 111 older participants, as well as a replication cohort of 117 young subjects. We further tested the stability and generalizability of both scores by controlling for different MR scanners and gender, as well as by using different data sets of young adults as reference samples. Both scores showed robust agegroup-related differences for the subsequent memory contrast, and the FADE-SAME score additionally exhibited age-group-related differences for the novelty contrast. Furthermore, both scores correlate with behavioral measures of cognitive aging, namely memory performance. Taken together, our results suggest that single-value scores of memory-related fMRI responses may constitute promising biomarkers for quantifying neurocognitive aging

    Thermal Modelling and Simulation of Parabolic Trough Receiver Tubes

    Get PDF
    Receiver tubes (or heat collecting elements — HCE) are a key component of parabolic trough solar thermal power plants. They are mounted in the focal line of the collectors, absorb the concentrated solar irradiance and transfer the absorbed energy to the heat transfer fluid flowing through them. During the design phase of the receiver tubes and for the performance prediction of solar thermal power plants it is helpful to derive their technical properties, like the thermal losses or the temperature field in the receiver tubes, from their physical and geometrical properties. For this purpose, several models have been developed in the past [1–3]. In this paper, the different existing models are presented, compared and assessed. It is found that a simple analytical model is a helpful tool for the fast prediction of the temperature distribution in the receiver tube. Furthermore, a 2-dimensional and a 3-dimensioanl model are compared regarding the heat losses of a HCE at different operation conditions. Both tools show a good agreement with available measurements. Finally with these tools the efficiency factor F′ is calculated that considers the heat losses of an irradiated receiver compared to that of an un-irradiated receiver. According to the performed calculations, the efficiency factor of parabolic trough receivers is higher than expected.</jats:p
    corecore