263 research outputs found

    Inhalation exposure methodology.

    Get PDF
    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.)

    Effects of nano particles on antigen-related airway inflammation in mice

    Get PDF
    BACKGROUND: Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. METHODS: ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. RESULTS: Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG(1 )and IgE. CONCLUSION: Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6

    POMC: The Physiological Power of Hormone Processing.

    Get PDF
    Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon

    The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO<sub>2</sub>) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling <it>in vitro</it>. In addition, TiO<sub>2 </sub>effects on surfactant ultrastructure were visualized.</p> <p>Methods</p> <p>A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO<sub>2 </sub>NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.</p> <p>Results</p> <p>TiO<sub>2 </sub>NSP, but not MSP, induced a surfactant dysfunction. For TiO<sub>2 </sub>NSP, adsorption surface tension (γ<sub>ads</sub>) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γ<sub>min</sub>) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO<sub>2 </sub>NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γ<sub>ads </sub>(63.6 ± 0.4 mN/m) and γ<sub>min </sub>(21.1 ± 0.4 mN/m). Interestingly, TiO<sub>2 </sub>NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.</p> <p>Conclusion</p> <p>TiO<sub>2 </sub>nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.</p

    CRF-Like Diuretic Hormone Negatively Affects Both Feeding and Reproduction in the Desert Locust, Schistocerca gregaria

    Get PDF
    Diuretic hormones (DH) related to the vertebrate Corticotropin Releasing Factor (CRF) have been identified in diverse insect species. In the migratory locust, Locusta migratoria, the CRF-like DH (CRF/DH) is localized in the same neurosecretory cells as the Ovary Maturating Parsin (OMP), a neurohormone that stimulates oocyte growth, vitellogenesis and hemolymph ecdysteroid levels in adult female locusts. In this study, we investigated whether CRF-like DH can influence feeding and reproduction in the desert locust, Schistocerca gregaria. We identified two highly similar S. gregaria CRF-like DH precursor cDNAs, each of which also encodes an OMP isoform. Alignment with other insect CRF-like DH precursors shows relatively high conservation of the CRF/DH sequence while the precursor region corresponding to OMP is not well conserved. Quantitative real-time RT-PCR revealed that the precursor transcripts mainly occur in the central nervous system and their highest expression level was observed in the brain. Injection of locust CRF/DH caused a significantly reduced food intake, while RNAi knockdown stimulated food intake. Therefore, our data indicate that CRF-like DH induces satiety. Furthermore, injection of CRF/DH in adult females retarded oocyte growth and caused lower ecdysteroid titers in hemolymph and ovaries, while RNAi knockdown resulted in opposite effects. The observed effects of CRF/DH may be part of a wider repertoire of neurohormonal activities, constituting an integrating control system that affects food intake and excretion, as well as anabolic processes like oocyte growth and ecdysteroidogenesis, following a meal. Our discussion about the functional relationship between CRF/DH and OMP led to the hypothesis that OMP may possibly act as a monitoring peptide that can elicit negative feedback effects

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF
    corecore