2,208 research outputs found

    Helioseismology and the solar age

    Get PDF
    The problem of measuring the solar age by means of helioseismology hasbeen recently revisited by Guenther & Demarque (1997) and by Weiss & Schlattl (1998). Different best values for tseist_{\rm seis} and different assessment of the uncertainty resulted from these two works. We show that depending on the way seismic data are used, one may obtain the value tseis4.6t_{\rm seis}\approx 4.6 Gy, close to the age of the oldest meteorites, tmet=4.57t_{\rm met}=4.57 Gy, like in the first paper, or above 5 Gy like in the second paper. The discrepancy in the seismic estimates of the solar age may be eliminated by assuming higher than the standard metal abundance and/or an upward revision of the opacities in the solar radiative interior.We argue that the most accurate and robust seismic measure of the solar age are the small frequency separations, D,n=νl,nν+1,n1D_{\ell,n}=\nu_{l,n}-\nu_{\ell+1,n-1}, for spherical harmonic degrees =0,2\ell=0,2 and radial orders nn\gg\ell.The seismic age inferred by minimization of the sum of squared differences between the model and the solar small separations is tseis=4.66±0.11t_{\rm seis}=4.66\pm0.11, a number consistent with meteoritic data.Our analysis supports earlier suggestions of using small frequency separations as stellar age indicators.Comment: 8 pages + 4 ps figures included, LaTeX file with l-aa.sty, submitted to Astronomy and Astrophysic

    Extracting convergent surface energies from slab calculations

    Full text link
    The formation energy of a solid surface can be extracted from slab calculations if the bulk energy per atom is known. It has been pointed out previously that the resulting surface energy will diverge with slab thickness if the bulk energy is in error, in the context of calculations which used different methods to study the bulk and slab systems. We show here that this result is equally relevant for state-of-the-art computational methods which carefully treat bulk and slab systems in the same way. Here we compare different approaches, and present a solution to the problem that eliminates the divergence and leads to rapidly convergent and accurate surface energies.Comment: 3 revtex pages, 1 figure, in print on J. Phys. Cond. Mat

    Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures

    Full text link
    The free-carrier screening of macroscopic polarization fields in wurtzite GaN/InGaN quantum wells lasers is investigated via a self-consistent tight-binding approach. We show that the high carrier concentrations found experimentally in nitride laser structures effectively screen the built-in spontaneous and piezoelectric polarization fields, thus inducing a ``field-free'' band profile. Our results explain some heretofore puzzling experimental data on nitride lasers, such as the unusually high lasing excitation thresholds and emission blue-shifts for increasing excitation levels.Comment: RevTeX 4 pages, 4 figure

    First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory

    Get PDF
    A number of diverse bulk properties of the zincblende and wurtzite III-V nitrides AlN, GaN, and InN, are predicted from first principles within density functional theory using the plane-wave ultrasoft pseudopotential method, within both the LDA (local density) and GGA (generalized gradient) approximations to the exchange-correlation functional. Besides structure and cohesion, we study formation enthalpies (a key ingredient in predicting defect solubilities and surface stability), spontaneous polarizations and piezoelectric constants (central parameters for nanostructure modeling), and elastic constants. Our study bears out the relative merits of the two density functional approaches in describing diverse properties of the III-V nitrides (and of the parent species N2_2, Al, Ga, and In), and leads us to conclude that the GGA approximation, associated with high-accuracy techniques such as multiprojector ultrasoft pseudopotentials or modern all-electron methods, is to be preferred in the study of III-V nitrides.Comment: RevTeX 6 pages, 12 tables, 0 figure

    Spontaneous polarization and piezoelectric constants of III-V nitrides

    Full text link
    The spontaneous polarization, dynamical Born charges, and piezoelectric constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using the Berry phase approach to polarization in solids. The piezoelectric constants are found to be up 10 times larger than in conventional III-V's and II-VI's, and comparable to those of ZnO. Further properties at variance with those of conventional III-V compounds are the sign of the piezoelectric constants (positive as in II-VI's) and the very large spontaneous polarization.Comment: RevTeX 4 pages, improved upon revie

    Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces

    Full text link
    The reconstruction mechanism of (001) fcc transition metal surfaces is investigated using a full-potential all-electron electronic structure method within density-functional theory. Total-energy supercell calculations confirm the experimental finding that a close-packed quasi-hexagonal overlayer reconstruction is possible for the late 5dd-metals Ir, Pt, and Au, while it is disfavoured in the isovalent 4dd metals (Rh, Pd, Ag). The reconstructive behaviour is driven by the tensile surface stress of the unreconstructed surfaces; the stress is significantly larger in the 5dd metals than in 4dd ones, and only in the former case it overcomes the substrate resistance to the required geometric rearrangement. It is shown that the surface stress for these systems is due to dd charge depletion from the surface layer, and that the cause of the 4th-to-5th row stress difference is the importance of relativistic effects in the 5dd series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23 May 199

    Singling out the effect of quenched disorder in the phase diagram of cuprates

    Get PDF
    We investigate the specific influence of structural disorder on the suppression of antiferromagnetic order and on the emergence of cuprate superconductivity. We single out pure disorder, by focusing on a series of Yz_{z}Eu1z_{1-z}Ba2_2Cu3_3O6+y_{6+y} samples at fixed oxygen content y=0.35y=0.35, in the range 0z10\le z\le 1. The gradual Y/Eu isovalent substitution smoothly drives the system through the Mott-insulator to superconductor transition from a full antiferromagnet with N\'eel transition TN=320T_N=320 K at z=0z=0 to a bulk superconductor with superconducting critical temperature Tc=18T_c=18 K at z=1z=1, YBa2_2Cu3_3O6.35_{6.35}. The electronic properties are finely tuned by gradual lattice deformations induced by the different cationic radii of the two lanthanides, inducing a continuous change of the basal Cu(1)-O chain length, as well as a controlled amount of disorder in the active Cu(2)O2_2 bilayers. We check that internal charge transfer from the basal to the active plane is entirely responsible for the doping of the latter and we show that superconductivity emerges with orthorhombicity. By comparing transition temperatures with those of the isoelectronic clean system we deterime the influence of pure structural disorder connected with the Y/Eu alloy.Comment: 10 pages 11 figures, submitted to Journal of Physics: Condensed Matter, Special Issue in memory of Prof. Sandro Massid

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure
    corecore