2,208 research outputs found
Helioseismology and the solar age
The problem of measuring the solar age by means of helioseismology hasbeen
recently revisited by Guenther & Demarque (1997) and by Weiss & Schlattl
(1998). Different best values for and different assessment of
the uncertainty resulted from these two works. We show that depending on the
way seismic data are used, one may obtain the value
Gy, close to the age of the oldest meteorites, Gy, like in
the first paper, or above 5 Gy like in the second paper. The discrepancy in the
seismic estimates of the solar age may be eliminated by assuming higher than
the standard metal abundance and/or an upward revision of the opacities in the
solar radiative interior.We argue that the most accurate and robust seismic
measure of the solar age are the small frequency separations,
, for spherical harmonic degrees
and radial orders .The seismic age inferred by
minimization of the sum of squared differences between the model and the solar
small separations is , a number consistent with
meteoritic data.Our analysis supports earlier suggestions of using small
frequency separations as stellar age indicators.Comment: 8 pages + 4 ps figures included, LaTeX file with l-aa.sty, submitted
to Astronomy and Astrophysic
Extracting convergent surface energies from slab calculations
The formation energy of a solid surface can be extracted from slab
calculations if the bulk energy per atom is known. It has been pointed out
previously that the resulting surface energy will diverge with slab thickness
if the bulk energy is in error, in the context of calculations which used
different methods to study the bulk and slab systems. We show here that this
result is equally relevant for state-of-the-art computational methods which
carefully treat bulk and slab systems in the same way. Here we compare
different approaches, and present a solution to the problem that eliminates the
divergence and leads to rapidly convergent and accurate surface energies.Comment: 3 revtex pages, 1 figure, in print on J. Phys. Cond. Mat
Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures
The free-carrier screening of macroscopic polarization fields in wurtzite
GaN/InGaN quantum wells lasers is investigated via a self-consistent
tight-binding approach. We show that the high carrier concentrations found
experimentally in nitride laser structures effectively screen the built-in
spontaneous and piezoelectric polarization fields, thus inducing a
``field-free'' band profile. Our results explain some heretofore puzzling
experimental data on nitride lasers, such as the unusually high lasing
excitation thresholds and emission blue-shifts for increasing excitation
levels.Comment: RevTeX 4 pages, 4 figure
First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory
A number of diverse bulk properties of the zincblende and wurtzite III-V
nitrides AlN, GaN, and InN, are predicted from first principles within density
functional theory using the plane-wave ultrasoft pseudopotential method, within
both the LDA (local density) and GGA (generalized gradient) approximations to
the exchange-correlation functional. Besides structure and cohesion, we study
formation enthalpies (a key ingredient in predicting defect solubilities and
surface stability), spontaneous polarizations and piezoelectric constants
(central parameters for nanostructure modeling), and elastic constants. Our
study bears out the relative merits of the two density functional approaches in
describing diverse properties of the III-V nitrides (and of the parent species
N, Al, Ga, and In), and leads us to conclude that the GGA approximation,
associated with high-accuracy techniques such as multiprojector ultrasoft
pseudopotentials or modern all-electron methods, is to be preferred in the
study of III-V nitrides.Comment: RevTeX 6 pages, 12 tables, 0 figure
Spontaneous polarization and piezoelectric constants of III-V nitrides
The spontaneous polarization, dynamical Born charges, and piezoelectric
constants of the III-V nitrides AlN, GaN, and InN are studied ab initio using
the Berry phase approach to polarization in solids. The piezoelectric constants
are found to be up 10 times larger than in conventional III-V's and II-VI's,
and comparable to those of ZnO. Further properties at variance with those of
conventional III-V compounds are the sign of the piezoelectric constants
(positive as in II-VI's) and the very large spontaneous polarization.Comment: RevTeX 4 pages, improved upon revie
Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces
The reconstruction mechanism of (001) fcc transition metal surfaces is
investigated using a full-potential all-electron electronic structure method
within density-functional theory. Total-energy supercell calculations confirm
the experimental finding that a close-packed quasi-hexagonal overlayer
reconstruction is possible for the late 5-metals Ir, Pt, and Au, while it is
disfavoured in the isovalent 4 metals (Rh, Pd, Ag). The reconstructive
behaviour is driven by the tensile surface stress of the unreconstructed
surfaces; the stress is significantly larger in the 5 metals than in 4
ones, and only in the former case it overcomes the substrate resistance to the
required geometric rearrangement. It is shown that the surface stress for these
systems is due to charge depletion from the surface layer, and that the
cause of the 4th-to-5th row stress difference is the importance of relativistic
effects in the 5 series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23
May 199
Singling out the effect of quenched disorder in the phase diagram of cuprates
We investigate the specific influence of structural disorder on the
suppression of antiferromagnetic order and on the emergence of cuprate
superconductivity. We single out pure disorder, by focusing on a series of
YEuBaCuO samples at fixed oxygen content
, in the range . The gradual Y/Eu isovalent substitution
smoothly drives the system through the Mott-insulator to superconductor
transition from a full antiferromagnet with N\'eel transition K at
to a bulk superconductor with superconducting critical temperature
K at , YBaCuO. The electronic properties are
finely tuned by gradual lattice deformations induced by the different cationic
radii of the two lanthanides, inducing a continuous change of the basal Cu(1)-O
chain length, as well as a controlled amount of disorder in the active
Cu(2)O bilayers. We check that internal charge transfer from the basal to
the active plane is entirely responsible for the doping of the latter and we
show that superconductivity emerges with orthorhombicity. By comparing
transition temperatures with those of the isoelectronic clean system we
deterime the influence of pure structural disorder connected with the Y/Eu
alloy.Comment: 10 pages 11 figures, submitted to Journal of Physics: Condensed
Matter, Special Issue in memory of Prof. Sandro Massid
Macroscopic polarization and band offsets at nitride heterojunctions
Ab initio electronic structure studies of prototypical polar interfaces of
wurtzite III-V nitrides show that large uniform electric fields exist in
epitaxial nitride overlayers, due to the discontinuity across the interface of
the macroscopic polarization of the constituent materials. Polarization fields
forbid a standard evaluation of band offsets and formation energies: using new
techniques, we find a large forward-backward asymmetry of the offset (0.2 eV
for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation
energies.Comment: RevTeX 4 pages, 2 figure
- …
