2,590 research outputs found
Market trends
A very large segment of the over water, long haul passenger market, 31% of the passengers who provide 42% of the passenger revenue, offers a significant market for an advanced supersonic transport. This is for both the first class and full-fare economy passenger markets. The supersonic transport may be more competitive here in spite of lower costs of subsonic transports, as passenger preference is a more powerful variable than DOC. This latter fact was amply demonstrated in the late fifties when the jets completely replaced the reciprocating engine transports on most world routes, in spite of slightly higher fares
Performance and benefits of an advanced technology supersonic cruise aircraft
The results of four years research on technology are synthesized in an advanced supersonic cruise aircraft design. Comparisons are presented with the former United States SST and the British-French Concorde, including aerodynamic efficiency, propulsion efficiency, weight efficiency, and community noise. Selected trade study results are presented on the subjects of design cruise Mach number, engine cycle selection, and noise suppression. The critical issue of program timing is addressed and some observations made regarding the impact that timing has on engine selection and minimization of program risk
Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface
Using self-assembly techniques, x-ray reflectivity measurements, and computer
simulations, we study the effective interaction between charged polymer rods
and surfaces. Long-time Brownian dynamics simulations are used to measure the
effective adhesion force acting on the rods in a model consisting of a planar
array of uniformly positively charged, stiff rods and a negatively charged
planar substrate in the presence of explicit monovalent counterions and added
monovalent salt ions in a continuous, isotropic dielectric medium. This
electrostatic model predicts an attractive polymer-surface adhesion force that
is weakly dependent on the bulk salt concentration and that shows fair
agreement with a Debye-Huckel approximation for the macroion interaction at
salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on
poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native
oxide of silicon show that monolayer structure, electron density, and surface
roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym
Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers
The effects of hydrogen (H2) and deuterium (D2) absorption were studied in
two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using
polarized neutron reflectivity (PNR). PNR was measured in an external magnetic
field H applied in the plane of the sample with the magnetization M confined in
the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal
thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively.
Because of these small values, the actual layer chemical composition,
thickness, and interface roughness parameters were determined from the nuclear
scattering length density profile ({\rho}_n) and its derivative obtained from
both x-ray reflectivity and PNR, and uncertainties were determined using Monte
Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred
throughout the samples, absorption in the multilayer stack was modest (0.02 D
per Pd atom) and thus did not expand. Direct magnetometry showed that H2
absorption decreased the total M at saturation and increased the component of M
in the plane of the sample when not at saturation. The PNR magnetic scattering
length density ({\rho}_m) revealed that the Pd layers in the multilayer stack
were magnetized and that their magnetization was preferentially modified upon
D2 absorption. In one sample, a modulation of M with twice the multilayer
period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption.
These results indicate that H2 or D2 absorption decreases both the PMA and
total magnetization of the samples. The lack of measurable expansion during
absorption indicates that these changes are primarily governed by modification
of the electronic structure of the material.Comment: to appear in Physics review B, 201
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
Flight and tunnel test results of the MDC mechanical jet noise suppressor nozzle
The flight and wind tunnel tests to determine the acoustic and performance effects of a mechanical jet noise suppressor nozzle mounted on a Viper engine of an HS-125 airplane are discussed. Flyover noise measurements were made with microphones mounted on top of a 137.5 m bridge tower. Seven nozzle configurations including two references nozzles, two suppressors, and three ejector inlets were tested. The suppressor nozzle of interest for an advanced supersonic transport, the suppressor/treated ejector, achieved a measured noise reduction of 14 EPNdB relative to a conventional conical reference nozzle at the highest pressure ratio tested (approximately 2.5). The unique engine nacelle, flight hardware, and nacelles from the HS-125 flight test program, combined with a simulated HS-125 fuselage were windtunnel tested. Both propulsion and acoustic data were recorded. Preliminary thrust data results from the wind tunnel tests are summarized and compared to other mechanical suppressor test results. The test results indicate that a noise reduction of at least 16 EPNdB would be possible for the suppressor/ejector nozzle scaled to typical AST engine size with a 5% thrust loss at a typical takeoff climb speed
Magnetic non-uniformity and thermal hysteresis of magnetism in a manganite thin film
We measured the chemical and magnetic depth profiles of a single crystalline
(LaPr)CaMnO (x = 0.52\pm0.05, y =
0.23\pm0.04, {\delta} = 0.14\pm0.10) film grown on a NdGaO3 substrate using
x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and
polarized neutron reflectometry. Our data indicate that the film exhibits
coexistence of different magnetic phases as a function of depth. The magnetic
depth profile is correlated with a variation of chemical composition with
depth. The thermal hysteresis of ferromagnetic order in the film suggests a
first order ferromagnetic transition at low temperatures
Preventative tele-health supported services for early stage chronic obstructive pulmonary disease: a protocol for a pragmatic randomized controlled trial pilot
Background
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent debilitating long term condition. It is the second most common cause of emergency admission to hospital in the UK and remains one of the most costly conditions to treat through acute care.
Tele-health monitoring offers potential to reduce the rates of re-hospitalisation and emergency department visits and improve quality of life for people with COPD. However, the current evidence base to support technology adoption and implementation is limited and the resource implications for implementing tele-health in practice can be very high. This trial will employ tele-health monitoring in a preventative capacity for patients diagnosed with early stage COPD following discharge from hospital to determine whether it reduces their need for additional health service support or hospital admission and improves their quality of life.
Methods/Design
We describe a pilot study for a two arm, one site randomized controlled trial (RCT) to determine the effect of tele-health monitoring on self-management, quality of life and patient satisfaction. Sixty patients who have been discharged from one acute trust with a primary diagnosis of COPD and who have agreed to receive community clinical support following discharge from acute care will be randomly assigned to one of two groups: (a) Tele-health supported Community COPD Service; or (b) Usual Care. The tele-health supported service involves the patient receiving two home visits with a specialist COPD clinician (nurse or physiotherapist) then participating in daily tele-monitoring over an eight week period. Usual care consists of six home visits to the patient by specialist COPD clinicians again over eight successive weeks. Health status and quality of life data for all participants will be measured at baseline, on discharge from the service and at six months post discharge from the service.
Discussion
The tele-health service under study is a complex service delivered through a collaboration between local authority and health care partners. The implementation of this service demanded significant changes to established working patterns and has been a challenging process requiring considerable planning - a challenge that many providers are likely to face in the future.
Trial registration
Current Controlled Trials ISRCTN6885601
- …
