6,477 research outputs found

    Transitions to Nematic states in homogeneous suspensions of high aspect ratio magnetic rods

    Full text link
    Isotropic-Nematic and Nematic-Nematic transitions from a homogeneous base state of a suspension of high aspect ratio, rod-like magnetic particles are studied for both Maier-Saupe and the Onsager excluded volume potentials. A combination of classical linear stability and asymptotic analyses provides insight into possible nematic states emanating from both the isotropic and nematic non-polarized equilibrium states. Local analytical results close to critical points in conjunction with global numerical results (Bhandar, 2002) yields a unified picture of the bifurcation diagram and provides a convenient base state to study effects of external orienting fields.Comment: 3 Figure

    Identification of vortexes obstructing the dynamo mechanism in laboratory experiments

    Full text link
    The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called Singular Value Decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.Comment: 25 pages, 12 figures, submitted to Physics of Fluid

    Variational Monte Carlo Calculations of 3^3H and 4^4He with a relativistic Hamiltonian - II

    Full text link
    In relativistic Hamiltonians the two-nucleon interaction is expressed as a sum of v~ij\tilde{v}_{ij}, the interaction in the Pij=0{\bf P}_{ij}=0 rest frame, and the ``boost interaction'' δv(Pij)\delta v({\bf P}_{ij}) which depends upon the total momentum Pij{\bf P}_{ij} and vanishes in the rest frame. The δv\delta v can be regarded as a sum of four terms: δvRE\delta v_{RE}, δvLC\delta v_{LC}, δvTP\delta v_{TP} and δvQM\delta v_{QM}; the first three originate from the relativistic energy-momentum relation, Lorentz contraction and Thomas precession, while the last is purely quantum. The contributions of δvRE\delta v_{RE} and δvLC\delta v_{LC} have been previously calculated with the variational Monte Carlo method for 3^3H and 4^4He. In this brief note we report the results of similar calculations for the contributions of δvTP\delta v_{TP} and δvQM\delta v_{QM}. These are found to be rather small.Comment: 7 pages, P-94-09-07

    Measurements of the magnetic field induced by a turbulent flow of liquid metal

    Full text link
    Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The magnetic field structure is reconstructed from both internal and external measurements. A mean toroidal magnetic field is induced by the flow when an axial field is applied, thereby demonstrating the omega effect. Poloidal magnetic flux is expelled from the fluid by the poloidal flow. Small-scale magnetic field structures are generated by turbulence in the flow. The resulting magnetic power spectrum exhibits a power-law scaling consistent with the equipartition of the magnetic field with a turbulent velocity field. The magnetic power spectrum has an apparent knee at the resistive dissipation scale. Large-scale eddies in the flow cause significant changes to the instantaneous flow profile resulting in intermittent bursts of non-axisymmetric magnetic fields, demonstrating that the transition to a dynamo is not smooth for a turbulent flow.Comment: 9 pages, 11 figures, invited talk by C. B. Forest at 2005 APS DPP meeting, resubmitted to Physics of Plasma

    Numerical Simulations of Dynamos Generated in Spherical Couette Flows

    Get PDF
    We numerically investigate the efficiency of a spherical Couette flow at generating a self-sustained magnetic field. No dynamo action occurs for axisymmetric flow while we always found a dynamo when non-axisymmetric hydrodynamical instabilities are excited. Without rotation of the outer sphere, typical critical magnetic Reynolds numbers RmcRm_c are of the order of a few thousands. They increase as the mechanical forcing imposed by the inner core on the flow increases (Reynolds number ReRe). Namely, no dynamo is found if the magnetic Prandtl number Pm=Rm/RePm=Rm/Re is less than a critical value Pmc1Pm_c\sim 1. Oscillating quadrupolar dynamos are present in the vicinity of the dynamo onset. Saturated magnetic fields obtained in supercritical regimes (either Re>2RecRe>2 Re_c or Pm>2PmcPm>2Pm_c) correspond to the equipartition between magnetic and kinetic energies. A global rotation of the system (Ekman numbers E=103,104E=10^{-3}, 10^{-4}) yields to a slight decrease (factor 2) of the critical magnetic Prandtl number, but we find a peculiar regime where dynamo action may be obtained for relatively low magnetic Reynolds numbers (Rmc300Rm_c\sim 300). In this dynamical regime (Rossby number Ro1Ro\sim -1, spheres in opposite direction) at a moderate Ekman number (E=103E=10^{-3}), a enhanced shear layer around the inner core might explain the decrease of the dynamo threshold. For lower EE (E=104E=10^{-4}) this internal shear layer becomes unstable, leading to small scales fluctuations, and the favorable dynamo regime is lost. We also model the effect of ferromagnetic boundary conditions. Their presence have only a small impact on the dynamo onset but clearly enhance the saturated magnetic field in the ferromagnetic parts. Implications for experimental studies are discussed

    Elastomer Filled With Single-Wall Carbon Nanotubes

    Get PDF
    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer

    Quantum Monte Carlo Studies of Relativistic Effects in Light Nuclei

    Get PDF
    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of 3H and 4He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in 3H (4He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.Comment: 33 pages, RevTeX, 11 PostScript figures, submitted to Physical Review

    Intermittent magnetic field excitation by a turbulent flow of liquid sodium

    Get PDF
    The magnetic field measured in the Madison Dynamo Experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.Comment: 5 pages, 7 figure
    corecore