974 research outputs found
Uniform high irradiance source
New 50 Kw xenon short arc lamp mounted within elliptical collector provides irradiance levels up to 4.4 x 10 to the 7th power watts/sq m with non-uniformity ratio of 3.30. Energy mixer or light pipe between lamp source and target improves non-uniformity to required ratio
The Response of Test Masses to Gravitational Waves in the Coordinates of a Local Observer
The response of laser interferometers to gravitational waves has been
calculated in a number of different ways, particularly in the
transverse-traceless and the local Lorentz gauges. At first sight, it would
appear that these calculations lead to different results when the separation
between the test masses becomes comparable to the wavelength of the
gravitational wave. In this paper this discrepancy is resolved. We describe the
response of free test masses to plane gravitational waves in the coordinate
frame of a local observer and show that it acquires contributions from three
different effects: the displacement of the test masses, the apparent change in
the photon velocity, and the variation in the clock speed of the local
observer, all of which are induced by the gravitational wave. Only when taken
together do these three effects represent a quantity which is translationally
invariant. This translationally-invariant quantity is identical to the response
function calculated in the transverse-traceless gauge. We thus resolve the
well-known discrepancy between the two coordinates systems, and show that the
results found in the coordinate frame of a local observer are valid for large
separation between the masses.Comment: 25 pages, 3 figures, Latex2
Turbulence, heat-transfer, and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile
Turbulence, heat transfer, and boundary layer measurements in conical nozzl
Adhesion of surfaces via particle adsorption: Exact results for a lattice of fluid columns
We present here exact results for a one-dimensional gas, or fluid, of
hard-sphere particles with attractive boundaries. The particles, which can
exchange with a bulk reservoir, mediate an interaction between the boundaries.
A two-dimensional lattice of such one-dimensional gas `columns' represents a
discrete approximation of a three-dimensional gas of particles between two
surfaces. The effective particle-mediated interaction potential of the
boundaries, or surfaces, is calculated from the grand-canonical partition
function of the one-dimensional gas of particles, which is an extension of the
well-studied Tonks gas. The effective interaction potential exhibits two
minima. The first minimum at boundary contact reflects depletion interactions,
while the second minimum at separations close to the particle diameter results
from a single adsorbed particle that crosslinks the two boundaries. The second
minimum is the global minimum for sufficiently large binding energies of the
particles. Interestingly, the effective adhesion energy corresponding to this
minimum is maximal at intermediate concentrations of the particles.Comment: to appear in Journal of Statistical Mechanics: Theory and Experimen
Wall-Fluid and Liquid-Gas Interfaces of Model Colloid-Polymer Mixtures by Simulation and Theory
We perform a study of the interfacial properties of a model suspension of
hard sphere colloids with diameter and non-adsorbing ideal polymer
coils with diameter . For the mixture in contact with a planar hard
wall, we obtain from simulations the wall-fluid interfacial free energy,
, for size ratios and 1, using
thermodynamic integration, and study the (excess) adsorption of colloids,
, and of polymers, , at the hard wall. The interfacial
tension of the free liquid-gas interface, , is obtained following
three different routes in simulations: i) from studying the system size
dependence of the interfacial width according to the predictions of capillary
wave theory, ii) from the probability distribution of the colloid density at
coexistence in the grand canonical ensemble, and iii) for statepoints where the
colloidal liquid wets the wall completely, from Young's equation relating
to the difference of wall-liquid and wall-gas interfacial
tensions, . In addition, we calculate , and using density functional theory and a scaled particle
theory based on free volume theory. Good agreement is found between the
simulation results and those from density functional theory, while the results
from scaled particle theory quantitatively deviate but reproduce some essential
features. Simulation results for obtained from the three
different routes are all in good agreement. Density functional theory predicts
with good accuracy for high polymer reservoir packing fractions,
but yields deviations from the simulation results close to the critical point.Comment: 23 pages, 10 figures, REVTEX. Fig 5a changed. Final versio
The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics
We describe a test particle approach based on dynamical density functional
theory (DDFT) for studying the correlated time evolution of the particles that
constitute a fluid. Our theory provides a means of calculating the van Hove
distribution function by treating its self and distinct parts as the two
components of a binary fluid mixture, with the `self' component having only one
particle, the `distinct' component consisting of all the other particles, and
using DDFT to calculate the time evolution of the density profiles for the two
components. We apply this approach to a bulk fluid of Brownian hard spheres and
compare to results for the van Hove function and the intermediate scattering
function from Brownian dynamics computer simulations. We find good agreement at
low and intermediate densities using the very simple Ramakrishnan-Yussouff
[Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy
functional. Since the DDFT is based on the equilibrium Helmholtz free energy
functional, we can probe a free energy landscape that underlies the dynamics.
Within the mean-field approximation we find that as the particle density
increases, this landscape develops a minimum, while an exact treatment of a
model confined situation shows that for an ergodic fluid this landscape should
be monotonic. We discuss possible implications for slow, glassy and arrested
dynamics at high densities.Comment: Submitted to Journal of Chemical Physic
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Hard sphere crystallization gets rarer with increasing dimension
We recently found that crystallization of monodisperse hard spheres from the
bulk fluid faces a much higher free energy barrier in four than in three
dimensions at equivalent supersaturation, due to the increased geometrical
frustration between the simplex-based fluid order and the crystal [J.A. van
Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here,
we analyze the microscopic contributions to the fluid-crystal interfacial free
energy to understand how the barrier to crystallization changes with dimension.
We find the barrier to grow with dimension and we identify the role of
polydispersity in preventing crystal formation. The increased fluid stability
allows us to study the jamming behavior in four, five, and six dimensions and
compare our observations with two recent theories [C. Song, P. Wang, and H. A.
Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in
press (2009)].Comment: 15 pages, 5 figure
Method of Heating a Foam-Based Catalyst Bed
A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction
Pharmacological And Genetic Reversal Of Age-Dependent Cognitive Deficits Attributable To Decreased Presenilin Function
Alzheimer\u27s disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced
- …
