3,634 research outputs found
Stabilization arising from PGEM : a review and further developments
The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated
A symmetric nodal conservative finite element method for the Darcy equation
This work introduces and analyzes novel stable Petrov-Galerkin EnrichedMethods (PGEM) for the Darcy problem based on the simplest but unstable continuous P1/P0 pair. Stability is recovered inside a Petrov-Galerkin framework where element-wise dependent residual functions, named multi-scale functions, enrich both velocity and pressure trial spaces. Unlike the velocity test space that is augmented with bubble-like functions, multi-scale functions correct edge residuals as well. The multi-scale functions turn out to be the well-known lowest order Raviart-Thomas basis functions for the velocity and discontinuous quadratics polynomial functions for the pressure. The enrichment strategy suggests the way to recover the local mass conservation property for nodal-based interpolation spaces. We prove that the method and its symmetric version are well-posed and achieve optimal error estimates in natural norms. Numerical validations confirm claimed theoretical results
Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells
To investigate the role that aging-dependent accumulation of mitochondrial DNA (mtDNA) mutations plays in the senescence processes, mitochondria from fibroblasts of 21 normal human individuals between 20 weeks (fetal) and 103 years of age were introduced into human mtDNA-less (ρ0) 206 cells by cytoplast × ρ0 cell fusion, and 7-31 transformant clones were isolated from each fusion. A slight cell donor age-dependent decrease in growth rate was detected in the transformants. Using an O2 consumption rate of 1 fmol/min/cell, which was not observed in any transformant among 158 derived from individuals 20 weeks (fetal) to 37 years of age, as a cut-off to identify respiratory-deficient clones, 11 such clones were found among 198 transformants derived from individuals 39-103 years of age. Furthermore, conventional and nonparametric analysis of the respiratory rates of 356 clones revealed a very significant decrease with donor age. In other analyses, a very significant age-dependent decline in the mtDNA content of the clones was observed, without, however, any significant correlation with the decrease in O2 consumption rate in the defective transformants. These observations clearly indicate the occurrence in the fibroblast-derived transformants of two independent, age-related functional alterations of mtDNA, presumably resulting from structural damage to this genome
Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking
After imposing the Gauss law constraint as an initial condition upon the
Hilbert space of the Nambu model, in all its generic realizations, we recover
QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result
is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to
the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz
symmetry breaking dynamically generates gauge invariance, provided the Gauss
law is imposed as an initial condition. In this way electrodynamics is
recovered, with the photon being realized as the Nambu-Goldstone modes of the
spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page
Dust from AGBs: relevant factors and modelling uncertainties
The dust formation process in the winds of Asymptotic Giant Branch stars is
discussed, based on full evolutionary models of stars with mass in the range
MMM, and metallicities .
Dust grains are assumed to form in an isotropically expanding wind, by growth
of pre--existing seed nuclei. Convection, for what concerns the treatment of
convective borders and the efficiency of the schematization adopted, turns out
to be the physical ingredient used to calculate the evolutionary sequences with
the highest impact on the results obtained. Low--mass stars with MM produce carbon type dust with also traces of silicon carbide. The
mass of solid carbon formed, fairly independently of metallicity, ranges from a
few M, for stars of initial mass M, to
M for MM; the size of dust
particles is in the range mm. On the contrary,
the production of silicon carbide (SiC) depends on metallicity. For the size of SiC grains varies in the range m, while the mass of SiC formed is
. Models of
higher mass experience Hot Bottom Burning, which prevents the formation of
carbon stars, and favours the formation of silicates and corundum. In this case
the results scale with metallicity, owing to the larger silicon and aluminium
contained in higher--Z models. At Z= we find that the most
massive stars produce dust masses M, whereas models of
smaller mass produce a dust mass ten times smaller. The main component of dust
are silicates, although corundum is also formed, in not negligible quantities
().Comment: Paper accepted for publication in Monthly Notices of the Royal
Astronomical Society Main Journal (2014 January 4
- …
