35,369 research outputs found
The effect of surface reflection and clouds on the estimation of total ozone from satellite measurements
The total amount of ozone in a vertical column is being measured by Nimbus 4 and 7 observations of the intensity of ultraviolet sunlight scattered from the earth. The algorithm for deriving the amount of ozone from the observations uses the assumption that the surface reflects the light isotropically and the albedo is independent of wavelength. The effects of anisotropic surfaces and clouds on the estimate of total ozone are computed for models of the earth-atmosphere system
Effect of molecular anisotropy on the intensity and degree of polarization of light scattered from model atmospheres
Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant
The effect of finite field size on classification and atmospheric correction
The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy
Neural tube-ectoderm interactions are required for trigeminal placode formation
Cranial sensory ganglia in vertebrates develop from the ectodermal placodes, the neural crest, or both. Although much is known about the neural crest contribution to cranial ganglia, relatively little is known about how placode cells form, invaginate and migrate to their targets. Here, we identify Pax-3 as a molecular marker for placode cells that contribute to the ophthalmic branch of the trigeminal ganglion and use it, in conjunction with DiI labeling of the surface ectoderm, to analyze some of the mechanisms underlying placode development. Pax-3 expression in the ophthalmic placode is observed as early as the 4-somite stage in a narrow band of ectoderm contiguous to the midbrain neural folds. Its expression broadens to a patch of ectoderm adjacent to the midbrain and the rostral hindbrain at the 8- to 10-somite stage. Invagination of the first Pax-3-positive cells begins at the 13-somite stage. Placodal invagination continues through the 35-somite stage, by which time condensation of the trigeminal ganglion has begun. To challenge the normal tissue interactions leading to placode formation, we ablated the cranial neural crest cells or implanted barriers between the neural tube and the ectoderm. Our results demonstrate that, although the presence of neural crest cells is not mandatory for Pax-3 expression in the forming placode, a diffusible signal from the neuroectoderm is required for induction and/or maintenance of the ophthalmic placode
Equation modifying program, L219 (EQMOD). Volume 1: Engineering and usage
The analysis and use of the Equation Modifying Program (EQMOD) L219, digital computer program which modifies matrices according to specific instructions was described. The program modifies the theoretical equation of motion and load equations generated by the DYLOFLEX programs Equation of Motion L217 (EOM), and Load Equations, L218 (LOADS), respectively
Theoretical investigation - The scattering of light by a planetary atmosphere Interim report, 22 Sep. - 22 Dec. 1965
Light scattering and polarization in planetary atmospher
Aerosol scattering of ultraviolet sunlight in the tropical maritime atmosphere
The effects of atmospheric aerosol scattering on the vertical profile of solar ultraviolet radiation are investigated. Measurements of diffuse and total ultraviolet radiation were made using a rocketborne optical sonde in the marine atmosphere of Antigua. During observations, the sun was at zenith. Vertical profiles of directly transmitted solar radiation were calculated by subtraction of the diffuse component from the total radiance. Using these values of direct downward solar UV-flux, the optical thickness of the atmosphere was derived as a function of altitude. Absorption by ozone was also considered. In the troposphere the values of observed optical thickness were in general equal to or lower than those expected theoretically from Rayleigh scattering alone. The measured radiation profiles were compared with those computed for a multiple scattering model atmosphere. Some computations regarding the interaction of UV-sunlight with maritime aerosols are presented
- …
