2,206 research outputs found
MSSM A-funnel and the Galactic Center Excess: Prospects for the LHC and Direct Detection Experiments
The pseudoscalar resonance or "A-funnel" in the Minimal Supersymmetric
Standard Model~(MSSM) is a widely studied framework for explaining dark matter
that can yield interesting indirect detection and collider signals. The
well-known Galactic Center excess (GCE) at GeV energies in the gamma ray
spectrum, consistent with annihilation of a GeV dark matter
particle, has more recently been shown to be compatible with significantly
heavier masses following reanalysis of the background. In this paper, we
explore the LHC and direct detection implications of interpreting the GCE in
this extended mass window within the MSSM A-funnel framework. We find that
compatibility with relic density, signal strength, collider constraints, and
Higgs data can be simultaneously achieved with appropriate parameter choices.
The compatible regions give very sharp predictions of 200-600 GeV CP-odd/even
Higgs bosons at low tan at the LHC and spin-independent cross sections
pb at direct detection experiments. Regardless of
consistency with the GCE, this study serves as a useful template of the strong
correlations between indirect, direct, and LHC signatures of the MSSM A-funnel
region.Comment: 32 pages and 9 figure
The variety generated by order algebras
Every ordered set can be considered as an algebra in a natural way. We investigate the variety generated by order algebras. We prove, among other things, that this variety is not finitely based and, although locally finite, it is not contained in any finitely generated variety; we describe the bottom of the lattice of its subvarieties
Slow nucleation rates in Chain Inflation with QCD Axions or Monodromy
The previous proposal (by two of us) of chain inflation with the QCD axion is
shown to fail. The proposal involved a series of fast tunneling events, yet
here it is shown that tunneling is too slow. We calculate the bubble nucleation
rates for phase transitions in the thick wall limit, approximating the barrier
by a triangle. A similar problem arises in realization of chain inflation in
the string landscape that uses series of minima along the monodromy staircase
around the conifold point. The basic problem is that the minima of the
potential are too far apart to allow rapid enough tunneling in these two
models. We entertain the possibility of overcoming this problem by modifying
the gravity sector to a Brans-Dicke theory. However, one would need extremely
small values for the Brans-Dicke parameter. Many successful alternatives exist,
including other "axions" (with mass scales not set by QCD) or potentials with
comparable heights and widths that do not suffer from the problem of slow
tunneling and provide successful candidates for chain inflation.Comment: 6 pages, 1 figur
The Paths of Quintessence
The structure of the dark energy equation of state phase plane holds
important information on the nature of the physics. We explain the bounds of
the freezing and thawing models of scalar field dark energy in terms of the
tension between the steepness of the potential vs. the Hubble drag.
Additionally, we extend the phase plane structure to modified gravity theories,
examine trajectories of models with certain properties, and categorize regions
in terms of scalar field hierarchical parameters, showing that dark energy is
generically not a slow roll phenomenon.Comment: 12 pages, 7 figures; matches PRD versio
Future Type Ia Supernova Data as Tests of Dark Energy from Modified Friedmann Equations
In the Cardassian model, dark energy density arises from modifications to the
Friedmann equation, which becomes H^2 = g(\rhom), where g(\rhom) is a new
function of the energy density. The universe is flat, matter dominated, and
accelerating. The distance redshift relation predictions of generalized
Cardassian models can be very different from generic quintessence models, and
can be differentiated with data from upcoming pencil beam surveys of Type Ia
Supernovae such as SNAP. We have found the interesting result that, once
is known to 10% accuracy, SNAP will be able to determine the sign of
the time dependence of the dark energy density. Knowledge of this sign (which
is related to the weak energy condition) will provide a first discrimination
between various cosmological models that fit the current observational data
(cosmological constant, quintessence, Cardassian expansion). Further, we have
performed Monte Carlo simulations to illustrate how well one can reproduce the
form of the dark energy density with SNAP.
To be concrete we study a class of two parameter (,) generalized
Cardassian models that includes the original Cardassian model (parametrized by
only) as a special case. Examples are given of MP Cardassian models that
fit current supernovae and CMB data, and prospects for differentiating between
MP Cardassian and other models in future data are discussed. We also note that
some Cardassian models can satisfy the weak energy condition even with a
dark energy component that has an effective equation of state .Comment: revised version accepted by Ap
Effects of vertical vibration on hopper flows of granular material
The discharge of granular material from a hopper subject to vertical sinusoidal oscillations was investigated using experiments and discrete element computer simulations. With the hopper exit closed, side-wall convection cells are observed, oriented such that particles move up along the inclined walls of the hopper and down at the center line. The convection cells are a result of the granular bed dilation during free fall and the subsequent interaction with the hopper walls. The mass discharge rate for a vibrating hopper scaled by the discharge rate without vibration reaches a maximum value at a dimensionless velocity amplitude just greater than 1. Further increases in the velocity decrease the discharge rate. The decrease occurs due to a decrease in the bulk density of the discharging material when vibration is applied
MACHOs, White Dwarfs, and the Age of the Universe
(Abridged Abstract) A favored interpretation of recent microlensing
measurements towards the Large Magellanic Cloud implies that a large fraction
(i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We
compare model white dwarf luminosity functions to the data from the
observational surveys in order to determine a lower bound on the age of any
substantial white dwarf halo population (and hence possibly on the age of the
Universe). We compare various theoretical white dwarf luminosity functions, in
which we vary hese three parameters, with the abovementioned survey results.
From this comparison, we conclude that if white dwarfs do indeed constitute
more than 10% of the local halo mass density, then the Universe must be at
least 10 Gyr old for our most extreme allowed values of the parameters. When we
use cooling curves that account for chemical fractionation and more likely
values of the IMF and the bolometric correction, we find tighter limits: a
white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5
Gyr). Our analysis also indicates that the halo white dwarfs almost certainly
have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs,
22 page
Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"
In the model of Chain Inflation, a sequential chain of coupled scalar fields
drives inflation. We consider a multidimensional potential with a large number
of bowls, or local minima, separated by energy barriers: inflation takes place
as the system tunnels from the highest energy bowl to another bowl of lower
energy, and so on until it reaches the zero energy ground state. Such a
scenario can be motivated by the many vacua in the stringy landscape, and our
model can apply to other multidimensional potentials. The ''graceful exit''
problem of Old Inflation is resolved since reheating is easily achieved at each
stage. Coupling between the fields is crucial to the scenario. The model is
quite generic and succeeds for natural couplings and parameters. Chain
inflation succeeds for a wide variety of energy scales -- for potentials
ranging from 10MeV scale inflation to GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde
High-Energy Neutrino Signatures of Dark Matter Decaying into Leptons
Decaying dark matter has previously been proposed as a possible explanation
for the excess high energy cosmic ray electrons and positrons seen by PAMELA
and the Fermi Gamma-Ray Space Telescope (FGST). To accommodate these signals
however, the decays must be predominantly leptonic, to muons or taus, and
therefore produce neutrinos, potentially detectable with the IceCube neutrino
observatory. We find that, with five years of data, IceCube (supplemented by
DeepCore) will be able to significantly constrain the relevant parameter space
of decaying dark matter, and may even be capable of discovering dark matter
decaying in the halo of the Milky Way.Comment: 4 pages, 1 figur
- …
