4,556 research outputs found
Relativistic Quantum Teleportation with Superconducting Circuits
We study the effects of relativistic motion on quantum teleportation and
propose a realizable experiment where our results can be tested. We compute
bounds on the optimal fidelity of teleportation when one of the observers
undergoes non-uniform motion for a finite time. The upper bound to the optimal
fidelity is degraded due to the observer's motion however, we discuss how this
degradation can be corrected. These effects are observable for experimental
parameters that are within reach of cutting-edge superconducting technology.
Our setup will further provide guidance for future space-based experiments.Comment: 5 pages, 4 figures, minor deviations from published version. I.F.
previously published as Ivette Fuentes-Guridi and Ivette Fuentes-Schulle
Dissolution of calcium carbonate: observations and model results in the subpolar North Atlantic
We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings by indicating that there is not a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
Topology and Phases in Fermionic Systems
There can exist topological obstructions to continuously deforming a gapped
Hamiltonian for free fermions into a trivial form without closing the gap.
These topological obstructions are closely related to obstructions to the
existence of exponentially localized Wannier functions. We show that by taking
two copies of a gapped, free fermionic system with complex conjugate
Hamiltonians, it is always possible to overcome these obstructions. This allows
us to write the ground state in matrix product form using Grassman-valued bond
variables, and show insensitivity of the ground state density matrix to
boundary conditions.Comment: 4 pages, see also arxiv:0710.329
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory
Dissolution of calcium carbonate: observations and model results in the North Atlantic
International audienceWe investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons. The study relies on observations from the open subpolar North Atlantic [sNA] and on a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings and do not indicate a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
- …
