1,937 research outputs found
Studies on Herbicide Binding in Photosystem II Membrane Fragments from Spinach
The mechanism of atrazine binding and its modification by Chelex-100-induced Ca2+ depletion and proteolytic degradation by trypsin, was analyzed in PS II membrane fragments from spinach. It was found: 1) Chelex-100 treatment leads in a comparatively slow process (t1/2 = 5 - 10 min) to Ca2+ re moval from a site that is characterized by a high affinity as reflected by KD values of the order of 10-7M. The number of these binding sites was found to be almost one per PS II in samples washed twice with Ca2+ -free buffer. 2) Chelex-100 treatment does not affect the affinity of atrazine binding but increases the susceptibility to proteolytic attack by trypsin. 3) The electron transport activity is only slightly affected by Chelex-100 treatment. 4) The atrazine binding exhibits a rather small T-dependence within the physiological range of 7 °C to 27 °C. The implications of these findings for herbicide binding are discussed
Electroweak Baryogenesis in Non-minimal Composite Higgs Models
We address electroweak baryogenesis in the context of composite Higgs models,
pointing out that modifications to the Higgs and top quark sectors can play an
important role in generating the baryon asymmetry. Our main observation is that
composite Higgs models that include a light, gauge singlet scalar in the
spectrum [as in the model based on the symmetry breaking pattern SO(6)/SO(5)],
provide all necessary ingredients for viable baryogenesis. In particular, the
singlet leads to a strongly first-order electroweak phase transition and
introduces new sources of CP violation in dimension-five operators involving
the top quark. We discuss the amount of baryon asymmetry produced and the
experimental constraints on the model.Comment: 15 pages, 7 figure
Crystallization of Intact and Subunit L-Deficient Monomers from Synechocystis PCC 6803 Photosystem I
Photosystem I monomers from wildtype cells of Synechocystis PCC 6803 and from a mutant deficient in the psaL gene were crystallized. PsaL encodes for the hydrophobic subunit L, which has been proposed to constitute the trimerization domain in the PS I trimer. The absence of subunit L facilitated crystallization of the PS I monomer. The unit cell dimensions and the space group for the crystals from this preparation could be determined to be a = b = 132 Å , c -525 Å, α = β = 90°, y = 120°, the space group is P61 or P65. The results show the potential of using specifically designed deletion mutants of an integral membrane protein for the systematic improvement of crystal structure data
Dose, exposure time, and resolution in Serial X-ray Crystallography
The resolution of X-ray diffraction microscopy is limited by the maximum dose
that can be delivered prior to sample damage. In the proposed Serial
Crystallography method, the damage problem is addressed by distributing the
total dose over many identical hydrated macromolecules running continuously in
a single-file train across a continuous X-ray beam, and resolution is then
limited only by the available molecular and X-ray fluxes and molecular
alignment. Orientation of the diffracting molecules is achieved by laser
alignment. We evaluate the incident X-ray fluence (energy/area) required to
obtain a given resolution from (1) an analytical model, giving the count rate
at the maximum scattering angle for a model protein, (2) explicit simulation of
diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency
cut off of the transfer function following iterative solution of the phase
problem, and reconstruction of an electron density map in the projection
approximation. These calculations include counting shot noise and multiple
starts of the phasing algorithm. The results indicate counting time and the
number of proteins needed within the beam at any instant for a given resolution
and X-ray flux. We confirm an inverse fourth power dependence of exposure time
on resolution, with important implications for all coherent X-ray imaging. We
find that multiple single-file protein beams will be needed for sub-nanometer
resolution on current third generation synchrotrons, but not on fourth
generation designs, where reconstruction of secondary protein structure at a
resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl
Living with ‘melanoma’…for a day: a phenomenological analysis of medical students’ simulated experiences
Background
Despite the rising incidence of melanoma, medical students have progressively fewer opportunities to encounter patients with this important condition. Curricula tend to attach the greatest value to intellectual forms of learning. Compared to intellectual learning, however, experiential learning affords students deep insights about a condition. Doctors who experience ill health are more empathic towards patients. However opportunities to learn about cancer experientially are limited. Temporary transfer tattoos can simulate the ill health associated with melanoma. We reasoned that, if doctors who have been sick are more empathic, temporarily ‘having’ melanoma might have a similar effect.
Objectives
Explore the impact of wearing a melanoma tattoo on medical students’ understanding of patienthood and attitudes towards patients with melanoma.
Methods
Ten fourth year medical students were recruited to a simulation. They wore a melanoma tattoo for 24 hours and listened to a patient’s account of receiving their diagnosis. Data were captured using audio-diaries and face-to-face interviews, transcribed, and analysed phenomenologically using the template analysis method.
Results
There were four themes: 1) Melanoma simulation: opening up new experiences; 2) Drawing upon past experiences; 3) A transformative introduction to patienthood; 4) Doctors in the making: seeing cancer patients in a new light.
Conclusions
By means of a novel simulation, medical students were introduced to lived experiences of having a melanoma. Such an inexpensive simulation can prompt students to reflect critically on the empathetic care of such patients in the future
Universal amplitude ratios from numerical studies of the three-dimensional O(2) model
We investigate the three-dimensional O(2) model near the critical point by
Monte Carlo simulations and calculate the major universal amplitude ratios of
the model. The ratio U_0=A+/A- is determined directly from the specific heat
data at zero magnetic field. The data do not, however, allow to extract an
accurate estimate for alpha. Instead, we establish a strong correlation of U_0
with the value of alpha used in the fit. This numerical alpha-dependence is
given by A+/A- = 1 -4.20(5) alpha + O(alpha^2). For the special alpha-values
used in other calculations we find full agreement with the corresponding ratio
values, e. g. that of the shuttle experiment with liquid helium. On the
critical isochore we obtain the ratio xi+/xi-_T=0.293(9), and on the critical
line the ratio xi_T^c/xi_L^c=1.957(10) for the amplitudes of the transverse and
longitudinal correlation lengths. These two ratios are independent of the used
alpha or nu-values.Comment: 34 pages, 19 Ps-figures, Latex2e, revised version, to be published in
J. Phys.
Production of Gravitational Waves in the nMSSM
During a strongly first-order phase transition gravitational waves are
produced by bubble collisions and turbulent plasma motion. We analyze the
relevant characteristics of the electroweak phase transition in the nMSSM to
determine the generated gravitational wave signal. Additionally, we comment on
correlations between the production of gravitational waves and baryogenesis. We
conclude that the gravitational wave relic density in this model is generically
too small to be detected in the near future by the LISA experiment. We also
consider the case of a "Standard Model" with dimension-six Higgs potential,
which leads to a slightly stronger signal of gravitational waves.Comment: 29 pages, 7 figures; published version, some comments adde
Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice
Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
- …
