1,937 research outputs found

    Studies on Herbicide Binding in Photosystem II Membrane Fragments from Spinach

    Get PDF
    The mechanism of atrazine binding and its modification by Chelex-100-induced Ca2+ depletion and proteolytic degradation by trypsin, was analyzed in PS II membrane fragments from spinach. It was found: 1) Chelex-100 treatment leads in a comparatively slow process (t1/2 = 5 - 10 min) to Ca2+ re moval from a site that is characterized by a high affinity as reflected by KD values of the order of 10-7M. The number of these binding sites was found to be almost one per PS II in samples washed twice with Ca2+ -free buffer. 2) Chelex-100 treatment does not affect the affinity of atrazine binding but increases the susceptibility to proteolytic attack by trypsin. 3) The electron transport activity is only slightly affected by Chelex-100 treatment. 4) The atrazine binding exhibits a rather small T-dependence within the physiological range of 7 °C to 27 °C. The implications of these findings for herbicide binding are discussed

    Electroweak Baryogenesis in Non-minimal Composite Higgs Models

    Full text link
    We address electroweak baryogenesis in the context of composite Higgs models, pointing out that modifications to the Higgs and top quark sectors can play an important role in generating the baryon asymmetry. Our main observation is that composite Higgs models that include a light, gauge singlet scalar in the spectrum [as in the model based on the symmetry breaking pattern SO(6)/SO(5)], provide all necessary ingredients for viable baryogenesis. In particular, the singlet leads to a strongly first-order electroweak phase transition and introduces new sources of CP violation in dimension-five operators involving the top quark. We discuss the amount of baryon asymmetry produced and the experimental constraints on the model.Comment: 15 pages, 7 figure

    Crystallization of Intact and Subunit L-Deficient Monomers from Synechocystis PCC 6803 Photosystem I

    Get PDF
    Photosystem I monomers from wildtype cells of Synechocystis PCC 6803 and from a mu­tant deficient in the psaL gene were crystallized. PsaL encodes for the hydrophobic subunit L, which has been proposed to constitute the trimerization domain in the PS I trimer. The absence of subunit L facilitated crystallization of the PS I monomer. The unit cell dimensions and the space group for the crystals from this preparation could be determined to be a = b = 132 Å , c -525 Å, α = β = 90°, y = 120°, the space group is P61 or P65. The results show the potential of using specifically designed deletion mutants of an integral membrane protein for the systematic improvement of crystal structure data

    Dose, exposure time, and resolution in Serial X-ray Crystallography

    Full text link
    The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl

    Living with ‘melanoma’…for a day: a phenomenological analysis of medical students’ simulated experiences

    Get PDF
    Background Despite the rising incidence of melanoma, medical students have progressively fewer opportunities to encounter patients with this important condition. Curricula tend to attach the greatest value to intellectual forms of learning. Compared to intellectual learning, however, experiential learning affords students deep insights about a condition. Doctors who experience ill health are more empathic towards patients. However opportunities to learn about cancer experientially are limited. Temporary transfer tattoos can simulate the ill health associated with melanoma. We reasoned that, if doctors who have been sick are more empathic, temporarily ‘having’ melanoma might have a similar effect. Objectives Explore the impact of wearing a melanoma tattoo on medical students’ understanding of patienthood and attitudes towards patients with melanoma. Methods Ten fourth year medical students were recruited to a simulation. They wore a melanoma tattoo for 24 hours and listened to a patient’s account of receiving their diagnosis. Data were captured using audio-diaries and face-to-face interviews, transcribed, and analysed phenomenologically using the template analysis method. Results There were four themes: 1) Melanoma simulation: opening up new experiences; 2) Drawing upon past experiences; 3) A transformative introduction to patienthood; 4) Doctors in the making: seeing cancer patients in a new light. Conclusions By means of a novel simulation, medical students were introduced to lived experiences of having a melanoma. Such an inexpensive simulation can prompt students to reflect critically on the empathetic care of such patients in the future

    Universal amplitude ratios from numerical studies of the three-dimensional O(2) model

    Full text link
    We investigate the three-dimensional O(2) model near the critical point by Monte Carlo simulations and calculate the major universal amplitude ratios of the model. The ratio U_0=A+/A- is determined directly from the specific heat data at zero magnetic field. The data do not, however, allow to extract an accurate estimate for alpha. Instead, we establish a strong correlation of U_0 with the value of alpha used in the fit. This numerical alpha-dependence is given by A+/A- = 1 -4.20(5) alpha + O(alpha^2). For the special alpha-values used in other calculations we find full agreement with the corresponding ratio values, e. g. that of the shuttle experiment with liquid helium. On the critical isochore we obtain the ratio xi+/xi-_T=0.293(9), and on the critical line the ratio xi_T^c/xi_L^c=1.957(10) for the amplitudes of the transverse and longitudinal correlation lengths. These two ratios are independent of the used alpha or nu-values.Comment: 34 pages, 19 Ps-figures, Latex2e, revised version, to be published in J. Phys.

    Production of Gravitational Waves in the nMSSM

    Full text link
    During a strongly first-order phase transition gravitational waves are produced by bubble collisions and turbulent plasma motion. We analyze the relevant characteristics of the electroweak phase transition in the nMSSM to determine the generated gravitational wave signal. Additionally, we comment on correlations between the production of gravitational waves and baryogenesis. We conclude that the gravitational wave relic density in this model is generically too small to be detected in the near future by the LISA experiment. We also consider the case of a "Standard Model" with dimension-six Higgs potential, which leads to a slightly stronger signal of gravitational waves.Comment: 29 pages, 7 figures; published version, some comments adde

    Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

    Get PDF
    Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
    corecore