4,656 research outputs found

    The Theory of the Nucleon Spin

    Get PDF
    I discuss two topics of current interest in the study of the spin structure of the nucleon. First, I discuss whether there is a sum rule for the components of the nucleon's angular moments. Second, I discuss the measurement of the nucleon's transversity distribution in light of recent results reported by the HERMES collaboration at DESY.Comment: 15 pages, 8 figures, LaTeX using rspublic.cls and BoxedEPS macros; as submitted to Phil Trans A of the Royal Society for forthcoming volume: The Quark Structure of Matter; email correspondence to [email protected]

    Photon Structure and Quantum Fluctuation

    Get PDF
    Photon structure derives from quantum fluctuation in quantum field theory to fermion and anti-fermion, and has been an experimentally established feature of electrodynamics since the discovery of the positron. In hadronic physics, the observation of factorisable photon structure is similarly a fundamental test of the quantum field theory Quantum Chromodynamics (QCD). An overview of measurements of hadronic photon structure in e+e- and ep interactions is presented, and comparison made with theoretical expectation, drawing on the essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the Royal Society of London (Series A: Mathematical, Physical and Engineering Sciences

    CMS Barrel Pixel Detector Overview

    Get PDF
    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex Detector

    Elastic Pion Scattering on the Deuteron in a Multiple Scattering Model

    Get PDF
    Pion elastic scattering on deuterium is studied in the KMT multiple scattering approach developed in momentum space. Using a Paris wave function and the same methods and approximations as commonly used in pion scattering on heavier nuclei excellent agreement with differential cross section data is obtained for a wide range of pion energies. Only for Tπ>250T_{\pi}>250 MeV and very backward angles, discrepancies appear that are reminiscent of disagreements in pion scattering on 3^3He, 3^3H, and 4^4He. At low energies the second order corrections have been included. Polarization observables are studied in detail. While tensor analyzing powers are well reproduced, vector analyzing powers exhibit dramatic discrepancies.Comment: 25 pages LATEX and 9 postscript figures in a self-extracting uufile archiv

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
    corecore