2,200 research outputs found

    The chiral symplectic universality class

    Full text link
    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.Comment: accepted in Proceedings of Localisation 2002 Conference, Tokyo, Japan (to be published as supplement of J. Phys. Soc. Japan

    Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar

    Full text link
    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2)B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpfsdpf shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in resubmission on April 1

    Random Matrix Theory of a Chaotic Andreev Quantum Dot

    Full text link
    A new universality class distinct from the standard Wigner-Dyson ones is identified. This class is realized by putting a metallic quantum dot in contact with a superconductor, while applying a magnetic field so as to make the pairing field effectively vanish on average. A random-matrix description of the spectral and transport properties of such a quantum dot is proposed. The weak-localization correction to the tunnel conductance is nonzero and results from the depletion of the density of states due to the coupling with the superconductor. Semiclassically, the depletion is caused by a a mode of phase-coherent long-range propagation of electrons and holes.Comment: minor changes, 4 REVTeX page

    Quadrupole collectivity in neutron-deficient Sn nuclei: \nuc{104}{Sn} and the role of proton excitations

    Full text link
    We report on the experimental study of quadrupole collectivity in the neutron-deficient nucleus \nuc{104}{Sn} using intermediate-energy Coulomb excitation. The B(E2;01+21+)B(E2; 0^+_1 \rightarrow 2^+_1) value for the excitation of the first 2+2^+ state in \nuc{104}{Sn} has been measured to be 0.180(37) e20.180(37)~e^2b2^2 relative to the well-known B(E2)B(E2) value of \nuc{102}{Cd}. This result disagrees by more than one sigma with a recently published measurement \cite{Gua13}. Our result indicates that the most modern many-body calculations remain unable to describe the enhanced collectivity below mid-shell in Sn approaching N=Z=50N=Z=50. We attribute the enhanced collectivity to proton particle-hole configurations beyond the necessarily limited shell-model spaces and suggest the asymmetry of the B(E2)B(E2)-value trend around mid-shell to originate from enhanced proton excitations across Z=50Z=50 as N=ZN=Z is approached.Comment: Accepted for publication as rapid communication in Physical Review

    Spectroscopy of 35^{35}P using the one-proton knockout reaction

    Get PDF
    The structure of 35^{35}P was studied with a one-proton knockout reaction at88~MeV/u from a 36^{36}S projectile beam at NSCL. The γ\gamma rays from thedepopulation of excited states in 35^{35}P were detected with GRETINA, whilethe 35^{35}P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of 35^{35}P was deduced up to 7.5 MeV usingγγ\gamma-\gamma coincidences. The observed levels were attributed to protonremovals from the sdsd-shell and also from the deeply-bound p_1/2p\_{1/2} orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual (γ\gamma-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, C2SC^2S, derived from the36^{36}S (1p)(-1p) knockout reaction agree with those obtained earlier from36^{36}S(dd,\nuc{3}{He}) transfer, if a reduction factor R_sR\_s, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the (dd,\nuc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review

    Observation of mutually enhanced collectivity in self-conjugate 3876^{76}_{38}Sr38_{38}

    Full text link
    The lifetimes of the first 2+^{+} states in the neutron-deficient 76,78^{76,78}Sr isotopes were measured using a unique combination of the γ\gamma-ray line-shape method and two-step nucleon exchange reactions at intermediate energies. The transition rates for the 2+^{+} states were determined to be BB(E2;2+^{+}0+\to 0^{+}) = 2220(270) e2^{2}fm4^{4} for 76^{76}Sr and 1800(250) e2^{2}fm4^{4} for 78^{78}Sr, corresponding to large deformation of β2\beta_2 = 0.45(3) for 76^{76}Sr and 0.40(3) for 78^{78}Sr. The present data provide experimental evidence for mutually enhanced collectivity that occurs at NN = ZZ = 38. The systematic behavior of the excitation energies and BB(E2) values indicates a signature of shape coexistence in 76^{76}Sr, characterizing 76^{76}Sr as one of most deformed nuclei with an unusually reduced EE(4+^{+})/EE(2+^{+}) ratio.Comment: Accepted for publication in Physical Review C Rapid Communicatio

    Spectral Properties and Synchronization in Coupled Map Lattices

    Full text link
    Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.Comment: 10 pages with 15 figures (Postscript), REVTEX format. To appear in PR

    Quasiparticle localization in superconductors with spin-orbit scattering

    Full text link
    We develop a theory of quasiparticle localization in superconductors in situations without spin rotation invariance. We discuss the existence, and properties of superconducting phases with localized/delocalized quasiparticle excitations in such systems in various dimensionalities. Implications for a variety of experimental systems, and to the properties of random Ising models in two dimensions, are briefly discussed.Comment: 10 page
    corecore