1,035 research outputs found
Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X
© The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 185 (2016): 9-20, doi:10.1016/j.gca.2016.01.030.We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250–1523 °C, pressures of 1.0–3.5 GPa and oxygen fugacities at iron–wustite and wustite–magnetite. The total observed range of KdPb is 4.0–66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2–39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 − 119*P in GPa)*(1/FeO − 0.021).
We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the “natural” partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.This work would not have been done without the support of
NSF, through Grant EAR-0635530.2017-02-1
Natural risk assessment and decision planning for disaster mitigation
International audienceIn this paper, decisional models are introduced aiming at defining a general framework for natural disaster mitigation. More specifically, an integrated approach based on system modelling and optimal resource assignment is presented in order to support the decision makers in pre-operational and real-time management of forest fire emergencies. Some strategies for pre-operative and real time risk management will be described and formalized as optimal resource assignment problems. To this end, some models capable to describe the resources dynamics will be introduced, both in pre-operative phase and in real-time phase
Experimental Observation of Non-Ideal Nozzle Flow of Siloxane Vapor MDM
The first experimental results from the Test-Rig for Organic Vapors (TROVA) at Politecnico di Milano are reported. The facility implements an Organic Rankine Cycle (ORC) where the expansion process takes place within a straight axis convergent-divergent nozzle, which is the simplest geometry representative of an ORC turbine blade passage. In order to reduce the required input thermal power, a batch operating mode was selected for the plant. Experimental runs with air allowed to verify the throttling valve operation and the measurement techniques, which include total pressure and temperature measurements in the settling chamber, static pressure measurements along the nozzle axis. A double-passage Schlieren technique is used to visualize the flow field in the nozzle throat and divergent section and to determine the position of shock waves within the flow field. The first experimental observation of non-ideal nozzle flows are presented for the expansion of siloxane fluid MDM (C8H24O2Si3, octamethyltrisiloxane) for vapor expansion in the close proximity of the liquid-vapor saturation curve, at relatively low pressure of operation. A supersonic flow is attained within the divergent section of the nozzle, as demonstrated by the observation of an oblique shock wave at the throat section, where a 0.1 mm recessed step is located. Schlieren visualizations are limited by the occurrence of condensation along the mirror side of the nozzle. Pressure measurements are compatible with the observed flow field
Volatile Content of 4-Vesta: Evidence from Unequilibrated Eucrites
Eucrites are a class of basaltic meteorites that, along with the howardites and diogenites, likely derive from the asteroid 4-Vesta. This asteroid is depleted in moderately volatile elements relative to the Earth and carbonaceous chondrites. Extrapolation of this depletion trend predicts that bulk silicate 4-Vesta (BSV) contains at most 250-1000 g/g H2O, which is approximately a factor of two lower than the H2O content of Earth. To obtain more accurate H2O and F estimates for BSV, we examined four unequilibrated antarctic meteorites, Yamato(Y)-793548, Y-82210, Y-75011, and Y-74450, by EPMA and SIMS. Pyroxenes contain MgO-rich cores and FeO-rich rims, consistent with primary magmatic zoning. Volatile concentrations generally follow patterns expected for growth zoning with lower values in the cores and higher in the rims. These features indicate that thermal metamorphism and other post-crystallization processes did not significantly perturb the volatile contents of these unequilibrated eucrite pyroxenes. We used these data to derive best estimates for the BSV H2O and F content based on experimentally determined pyroxene-melt partition coefficients and models for magma generation on Vesta. In addition, we measured D/H in the early crystallizing pyroxenes and late crystallzing apatites. We find that the D/H of pyroxene and apatite are within error of one another as well as previous measurements of apatite in equilibrated eucrites. These results imply that degassing was minimal or did not fractionate D/H. Degassing may have been limited if eucrites were shallowly emplaced sills or dykes, or the total H2O content of the magmas was too low for vapor saturation. An alternative mechanism for limited D/H fractionation is that degassing did occur, but the H2/H2O of the exsolved vapor was approximately 15:85, as predicted from experiments
Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects
In an aging society, Alzheimer’s disease (AD) exerts an increasingly serious health and economic burden. Current treatments provide inadequate symptomatic relief as several distinct pathological processes are thought to underlie the decline of cognitive and neural function seen in AD. This suggests that the efficacy of treatment requires a multitargeted approach. In this context, palmitoylethanolamide (PEA) provides a novel potential adjunct therapy that can be incorporated into a multitargeted treatment strategy. We used young (6-month-old) and adult (12-month-old) 3×Tg-AD mice that received ultramicronized PEA (um-PEA) for 3 months via a subcutaneous delivery system. Mice were tested with a range of cognitive and noncognitive tasks, scanned with magnetic resonance imaging/magnetic resonance spectroscopy (MRI/MRS), and neurochemical release was assessed by microdialysis. Potential neuropathological mechanisms were assessed postmortem by western blot, reverse transcription–polymerase chain reaction (RT-PCR), and immunofluorescence. Our data demonstrate that um-PEA improves learning and memory, and ameliorates both the depressive and anhedonia-like phenotype of 3×Tg-AD mice. Moreover, it reduces Aβ formation, the phosphorylation of tau proteins, and promotes neuronal survival in the CA1 subregion of the hippocampus. Finally, um-PEA normalizes astrocytic function, rebalances glutamatergic transmission, and restrains neuroinflammation. The efficacy of um-PEA is particularly potent in younger mice, suggesting its potential as an early treatment. These data demonstrate that um-PEA is a novel and effective promising treatment for AD with the potential to be integrated into a multitargeted treatment strategy in combination with other drugs. Um-PEA is already registered for human use. This, in combination with our data, suggests the potential to rapidly proceed to clinical use
The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 1115–1132, doi:10.1002/2014GC005709.The NoMelt experiment imaged the mantle beneath 70 Ma Pacific seafloor with the aim of understanding the transition from the lithosphere to the underlying convecting asthenosphere. Seafloor magnetotelluric data from four stations were analyzed using 2-D regularized inverse modeling. The preferred electrical model for the region contains an 80 km thick resistive (>103 Ωm) lithosphere with a less resistive (∼50 Ωm) underlying asthenosphere. The preferred model is isotropic and lacks a highly conductive (≤10 Ωm) layer under the resistive lithosphere that would be indicative of partial melt. We first examine temperature profiles that are consistent with the observed conductivity profile. Our profile is consistent with a mantle adiabat ranging from 0.3 to 0.5°C/km. A choice of the higher adiabatic gradient means that the observed conductivity can be explained solely by temperature. In contrast, a 0.3°C/km adiabat requires an additional mechanism to explain the observed conductivity profile. Of the plausible mechanisms, H2O, in the form of hydrogen dissolved in olivine, is the most likely explanation for this additional conductivity. Our profile is consistent with a mostly dry lithosphere to 80 km depth, with bulk H2O contents increasing to between 25 and 400 ppm by weight in the asthenosphere with specific values dependent on the choice of laboratory data set of hydrous olivine conductivity and the value of mantle oxygen fugacity. The estimated H2O contents support the theory that the rheological lithosphere is a result of dehydration during melting at a mid-ocean ridge with the asthenosphere remaining partially hydrated and weakened as a result.Funding for the NoMELT experiment was provided by the National Science Foundation through the following grant numbers: OCE-0927172, OCE-0928270, OCE-1459649, and OCE-0928663.2015-10-1
Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam
During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks
for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton
beam bunches, separated by 100 ns. This tightly bunched beam structure allows a
very accurate time of flight measurement of neutrinos from CERN to LNGS on an
event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing
synchronization have been substantially improved for this campaign, taking
ad-vantage of additional independent GPS receivers, both at CERN and LNGS as
well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS.
The ICARUS-T600 detector has collected 25 beam-associated events; the
corresponding time of flight has been accurately evaluated, using all different
time synchronization paths. The measured neutrino time of flight is compatible
with the arrival of all events with speed equivalent to the one of light: the
difference between the expected value based on the speed of light and the
measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This
result is in agreement with the value previously reported by the ICARUS
collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with
improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl
Acellular Injectable Biomaterials for Treating Cardiovascular Disease
In the last decade, the field of tissue engineering has emerged as a potential therapeutic strategy for the regeneration and/or repair of various tissues afflicted by cardiovascular disease, such as myocardial infarction (MI) or peripheral artery disease (PAD). Among the different tissue engineering strategies, injectable hydrogels have been extensively studied and show encouraging results in both small and large animal models. An injectable hydrogel provides a favorable microenvironment for endogenous regeneration or repair, and depending on the material's design can be used either alone or as a carrier to deliver therapeutic molecules or stem cells. The type of injectable biomaterial is key for a successful hydrogel-based treatment, and in this chapter, we will focus on acellular injectable biomaterial approaches for both MI and PAD
A Prosthetic Limb Managed by Sensors-Based Electronic System: Experimental Results on Amputees
Taking the advantages offered by smart high-performance electronic devices, transradial prosthesis for upper-limb amputees was developed and tested. It is equipped with sensing devices and actuators allowing hand movements; myoelectric signals are detected by Myo armband with 8 ElectroMyoGraphic (EMG) electrodes, a 9-axis Inertial Measurement Unit (IMU) and Bluetooth Low Energy (BLE) module. All data are received through HM-11 BLE transceiver by Arduino board which processes them and drives actuators. Raspberry Pi board controls a touchscreen display, providing user a feedback related to prosthesis functioning and sends EMG and IMU data, gathered via the armband, to cloud platform thus allowing orthopedic during rehabilitation period, to monitor users’ improvements in real time. A GUI software integrating a machine learning algorithm was implemented for recognizing flexion/extension/rest gestures of user fingers. The algorithm performances were tested on 9 male subjects (8 able-bodied and 1 subject affected by upper-limb amelia), demonstrating high accuracy and fast responses
- …
