880 research outputs found

    Pure Samples of Quark and Gluon Jets at the LHC

    Get PDF
    Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets+X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon jets has been adde

    Electron transfer rates for asymmetric reactions

    Full text link
    We use a numerically exact real-time path integral Monte Carlo scheme to compute electron transfer dynamics between two redox sites within a spin-boson approach. The case of asymmetric reactions is studied in detail in the least understood crossover region between nonadiabatic and adiabatic electron transfer. At intermediate-to-high temperature, we find good agreement with standard Marcus theory, provided dynamical recrossing effects are captured. The agreement with our data is practically perfect when temperature renormalization is allowed. At low temperature we find peculiar electron transfer kinetics in strongly asymmetric systems, characterized by rapid transient dynamics and backflow to the donor.Comment: 13 pages, 4 figures, submitted to Chemical Physics Special Issue on the Spin-Boson Problem, ed. by H. Grabert and A. Nitza

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Jet Substructure Without Trees

    Get PDF
    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Inflation on the Brane with Vanishing Gravity

    Get PDF
    Many existing models of brane inflation suffer from a steep irreducible gravitational potential between the branes that causes inflation to end too early. Inspired by the fact that point masses in 2+1 D exert no gravitational force, we propose a novel unwarped and non-supersymmetric setup for inflation, consisting of 3-branes in two extra dimensions compactified on a sphere. The size of the sphere is stabilized by a combination of a bulk cosmological constant and a magnetic flux. Computing the 4D effective potential between probe branes in this background, we find a non-zero contribution only from exchange of level-1 KK modes of the graviton and radion. Identifying antipodal points on the 2-sphere projects out these modes, eliminating entirely the troublesome gravitational contribution to the inflationary potential.Comment: 19 pages, 11 figures, JHEP forma

    Conductance of the single-electron transistor: A comparison of experimental data with Monte Carlo calculations

    Full text link
    We report on experimental results for the conductance of metallic single-electron transistors as a function of temperature, gate voltage and dimensionless conductance. In contrast to previous experiments our transistor layout allows for a direct measurement of the parallel conductance and no ad hoc assumptions on the symmetry of the transistors are necessary. Thus we can make a comparison between our data and theoretical predictions without any adjustable parameter. Even for rather weakly conducting transistors significant deviations from the perturbative results are noted. On the other hand, path integral Monte Carlo calculations show remarkable agreement with experiments for the whole range of temperatures and conductances.Comment: 8 pages, 7 figures, revtex4, corrected typos, submitted to PR

    Jet Dipolarity: Top Tagging with Color Flow

    Get PDF
    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version

    Tools for Deconstructing Gauge Theories in AdS5

    Get PDF
    We employ analytical methods to study deconstruction of 5D gauge theories in the AdS5 background. We demonstrate that using the so-called q-Bessel functions allows a quantitative analysis of the deconstructed setup. Our study clarifies the relation of deconstruction with 5D warped theories.Comment: 30 pages; v2: several refinements, references adde

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number
    corecore