982 research outputs found

    All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot

    Get PDF
    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the DE population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.Comment: 5 pages, 3 figure

    Deterministic Generation of a Cluster State of Entangled Photons

    Full text link
    We use semiconductor quantum dots, "artificial atoms," to implement a scheme for deterministic generation of long strings of entangled photons in a cluster state, an important resource for quantum information processing. We demonstrate a prototype device which produces strings of a few hundred photons in which the entanglement persists over 5 sequential photons. The implementation follows a proposal by Lindner and Rudolph (Phys. Rev. Lett. 2009) which suggested periodic timed excitation of a precessing electron spin as a mechanism for entangling the electron spin with the polarization of the sequentially emitted photons. In our realization, the entangling qubit is a quantum dot confined dark exciton. By performing full quantum process tomography, we obtain the process map which fully characterizes the evolution of the system, containing the dark exciton and n photons after n applications of the periodic excitations. Our implementation may greatly reduce the resources needed for quantum information processing.Comment: 11 pages, 4 figures; supporting material is attached at the end of the main pape

    On-demand source of maximally entangled photon-pairs using the biexciton-exciton radiative cascade

    Full text link
    We perform full time resolved tomographic measurements of the polarization state of pairs of photons emitted during the radiative cascade of the confined biexciton in a semiconductor quantum dot. The biexciton was deterministically initiated using a π\pi-area pulse into the biexciton two-photon absorption resonance. Our measurements demonstrate that the polarization states of the emitted photon pair are maximally entangled. We show that the measured degree of entanglement depends solely on the temporal resolution by which the time difference between the emissions of the photon pair is determined. A route for fabricating an on demand source of maximally polarization entangled photon pairs is thereby provided

    Generating single photons at GHz modulation-speed using electrically controlled quantum dot microlenses

    Full text link
    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this high speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as 270 ps being 6.5 times faster than the radiative lifetime of 1.75 ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at high rates, exceeding the limitations set by the intrinsic radiative lifetime.Comment: 7 pages, 3 figure

    Determinisitic Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

    Full text link
    We demonstrate that the quantum dot-confined dark exciton forms a long-lived integer spin solid state qubit which can be deterministically on-demand initiated in a pure state by one optical pulse. Moreover, we show that this qubit can be fully controlled using short optical pulses, which are several orders of magnitude shorter than the life and coherence times of the qubit. Our demonstrations do not require an externally applied magnetic field and they establish that the quantum dot-confined dark exciton forms an excellent solid state matter qubit with some advantages over the half-integer spin qubits such as the confined electron and hole, separately. Since quantum dots are semiconductor nanostructures that allow integration of electronic and photonic components, the dark exciton may have important implications on implementations of quantum technologies consisting of semiconductor qubits.Comment: Added two authors, minor edits to figure captions, expanded discussion of dark exciton eigenstate

    Middle Cranial Fossa (MCF) Approach without the use of Lumbar Drain for the Management of Spontaneous Cerebral Spinal Fluid (CSF) Leaks

    Get PDF
    Objective: To determine the efficacy and morbidity of repairing spontaneous cerebrospinal fluid (CSF) leaks with the middle cranial fossa (MCF) approach without the use of a lumbar drain (LD), as perioperative use of LD remains controversial. Study Design: Retrospective review from 2003 to 2015. Setting: University of Iowa Hospitals and Clinics and Indiana University Health Center. Patients: Those with a confirmed lateral skull base spontaneous CSF leaks and/or encephaloceles. Intervention: MCF approach for repair of spontaneous CSF leak and/or encephalocele without the use of lumbar drain. Assessment of patient age, sex, body mass index (BMI), and medical comorbidities. Main Outcome Measure: Spontaneous CSF leak patient characteristics (age, sex, BMI, obstructive sleep apnea) were collected. Length of stay (LOS), hospital costs, postoperative complications, CSF leak rate, and need for LD were calculated. Results: Sixty-five operative MCF repairs were performed for spontaneous CSF leaks on 60 patients (five had bilateral CSF leaks). CSF diversion with LD was used in 15 of 60 patients, mostly before 2010. After 2010, only three of 44 patients (6.7%) had postoperative otorrhea requiring LD. The use of LD resulted in significantly longer LOS (3.6 ± 1.6 versus 8.7 ± 2.9 d) and hospital costs ($29,621). There were no postoperative complications in 77% (50 of 65) of cases. Three cases required return to the operating room for complications including frontal subdural hematoma (1), subdural CSF collection (1), and tension pneumocephalus (1). No patients experienced long-term neurologic sequelae or long-term CSF leak recurrence with an average length of follow-up of 19.5 months (range 3–137 mo). The average patient BMI was 37.5 ± 8.6 kg/m2. The average age was 57.5 ± 11.4 years and 68% were female. Obstructive sleep apnea was present in 43.3% (26 of 60) of patients. Conclusion: The morbidity of the MCF craniotomy for repair of spontaneous CSF leaks is low and the long-term efficacy of repair is high. Universal use of perioperative lumbar drain is not indicated and significantly increases length of stay and hospital costs. Obesity and obstructive sleep apnea are highly associated with spontaneous CSF leaks

    Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
    corecore