2,598 research outputs found
Lunar science prior to Apollo 11
Evolutional aspects and geological interpretations in lunar scienc
A high resolution scintillating fiber tracker with SiPM readout for the PEBS experiment
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a
mo dular high-resolution charged-particle tracking detector has been designed.
The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating
fiber s of 0.250mm diameter. The fibers are read out by four SiPM arrays (8mm x
1mm) e ach on either end of the module.Comment: 6 pages, 5 figures, presented at the ICATPP 1
Charting the TeV Milky Way: H.E.S.S. Galactic plane survey maps, catalog and source populations
Very-high-energy (VHE, E>100 GeV) gamma-rays provide a unique view of the
non-thermal universe, tracing the most violent and energetic phenomena at work
inside our Galaxy and beyond. The latest results of the H.E.S.S. Galactic Plane
Survey (HGPS) undertaken by the High Energy Stereoscopic System (H.E.S.S.), an
array of four imaging atmospheric Cherenkov telescopes located in Namibia, are
described here. The HGPS aims at the detection of cosmic accelerators with
environments suitable for the production of photons at the highest energies and
has led to the discovery of an unexpectedly large and diverse population of
over 60 sources of TeV gamma rays within its current range of l = 250 to 65
degrees in longitude and |b|<3.5 degrees in latitude. The data set of the HGPS
comprises 2800 hours of high-quality data, taken in the years 2004 to 2013. The
sensitivity for the detection of point-like sources, assuming a power-law
spectrum with a spectral index of 2.3 at a statistical significance of 5 sigma,
is now at the level of 2% Crab or better in the core HGPS region. The latest
maps of the inner Galaxy at TeV energies are shown alongside an introduction to
the first H.E.S.S. Galactic Plane Survey catalog. Finally, in addition to an
overview of the H.E.S.S. Galactic source population a few remarkable, recently
discovered sources will be highlighted.Comment: 8 pages, 6 figures, in Proceedings of the 48th Rencontres de Moriond
(2013), La Thuile (Italy
Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy
A silicon photomultiplier (SiPM) array has been developed at FBK-irst having
32 channels and a dimension of 8.0 x 1.1 mm^2. Each 250 um wide channel is
subdivided into 5 x 22 rectangularly arranged pixels. These sensors are
developed to read out a modular high resolution scintillating fiber tracker.
Key properties like breakdown voltage, gain and photon detection efficiency
(PDE) are found to be homogeneous over all 32 channels of an SiPM array. This
could make scintillating fiber trackers with SiPM array readout a promising
alternative to available tracker technologies, if noise properties and the PDE
are improved
A Scintillating Fiber Tracker With SiPM Readout
We present a prototype for the first tracking detector consisting of 250
micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The
detector has a modular design, each module consists of a mechanical support
structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins.
Five layers of scintillating fibers are glued to both top and bottom of the
support structure. SiPM arrays with a channel pitch of 250 micron are placed in
front of the fibers. We show the results of the first module prototype using
multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out
by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as
32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron
+/- 6 micron at an average yield of 10 detected photons per minimal ionizig
particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical
Seminar on Innovative Particle and Radiation Detectors (IPRD08
Two-dimensional streptavidin crystals on giant lipid bilayer vesicles
Streptavidin was crystallized on giant bilayer vesicles (20-60 mum) in sucrose solution at various pH values. The streptavidin-coated vesicles exhibited unique roughened spherical and prolate ellipsoidal shapes, illustrating resistance to curvature of the two-dimensional crystals. Studies indicated that the spheroids and prolate ellipsoids correspond to different crystal morphologies. Through confocal microscopy, the various crystal morphologies on vesicle surfaces were observed under different solution conditions. Unlike two-dimensional (2D) streptavidin crystals grown in ionic buffer that assume the P1, P2, and C222 lattices at pH 4, 5.5, and 7, respectively (Wang et al. Langmuir 1999, 15, 154 1), crystals grown in sucrose with no added salt show only the lowest density C222 lattice due to strong electrostatic interactions
Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter
The critical behavior of a model colloid-polymer mixture, the so-called AO
model, is studied using computer simulations and finite size scaling
techniques. Investigated are the interfacial tension, the order parameter, the
susceptibility and the coexistence diameter. Our results clearly show that the
interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26.
This is in good agreement with the 3D Ising exponent. Also calculated are
critical amplitude ratios, which are shown to be compatible with the
corresponding 3D Ising values. We additionally identify a number of subtleties
that are encountered when finite size scaling is applied to the AO model. In
particular, we find that the finite size extrapolation of the interfacial
tension is most consistent when logarithmic size dependences are ignored. This
finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497
(1993)]Comment: 13 pages, 16 figure
Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers
A simple analytic theory for mixtures of hard spheres and larger polymers
with excluded volume interactions is developed. The mixture is shown to exhibit
extensive immiscibility. For large polymers with strong excluded volume
interactions, the density of monomers at the critical point for demixing
decreases as one over the square root of the length of the polymer, while the
density of spheres tends to a constant. This is very different to the behaviour
of mixtures of hard spheres and ideal polymers, these mixtures although even
less miscible than those with polymers with excluded volume interactions, have
a much higher polymer density at the critical point of demixing. The theory
applies to the complete range of mixtures of spheres with flexible polymers,
from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure
- …
