1,152 research outputs found
Finite Temperature and Density Effects in Planar Q.E.D
The behavior of finite temperature planar electrodynamics is investigated. We
calculate the static as well as dynamic characteristic functions using real
time formalism. The temperature and density dependence of dielectric and
permeability functions, plasmon frequencies and their relation to the screening
length is determined. The radiative correction to the fermion mass is also
calculated. We also calculate the temperature dependence of the electron
(anyon) magnetic moment. Our results for the gyromagnetic ratio go smoothly to
the known result at zero temperature, , in accordance with the general
expectation.Comment: 24 pages, LaTe
Multiscaling in passive scalar advection as stochastic shape dynamics
The Kraichnan rapid advection model is recast as the stochastic dynamics of
tracer trajectories. This framework replaces the random fields with a small set
of stochastic ordinary differential equations. Multiscaling of correlation
functions arises naturally as a consequence of the geometry described by the
evolution of N trajectories. Scaling exponents and scaling structures are
interpreted as excited states of the evolution operator. The trajectories
become nearly deterministic in high dimensions allowing for perturbation theory
in this limit. We calculate perturbatively the anomalous exponent of the third
and fourth order correlation functions. The fourth order result agrees with
previous calculations.Comment: 14 pages, LaTe
Planning for execution monitoring on a planetary rover
A planetary rover will be traversing largely unknown and often unknowable terrain. In addition to geometric obstacles such as cliffs, rocks, and holes, it may also have to deal with non-geometric hazards such as soft soil and surface breakthroughs which often cannot be detected until rover is in imminent danger. Therefore, the rover must monitor its progress throughout a traverse, making sure to stay on course and to detect and act on any previously unseen hazards. Its onboard planning system must decide what sensors to monitor, what landmarks to take position readings from, and what actions to take if something should go wrong. The planning systems being developed for the Pathfinder Planetary Rover to perform these execution monitoring tasks are discussed. This system includes a network of planners to perform path planning, expectation generation, path analysis, sensor and reaction selection, and resource allocation
A comparison between pulsed and CW laser annealing for solar cell applications
The application of laser processing in solar cell fabrication is considered. Specific emphasis is placed on a process developed for the fabrication of a 16.6% silicon solar cell using pulsed laser processing. Results are presented which compare pulsed laser annealing with CW laser annealing in solar cell fabrication
Optimal rotations of deformable bodies and orbits in magnetic fields
Deformations can induce rotation with zero angular momentum where dissipation
is a natural ``cost function''. This gives rise to an optimization problem of
finding the most effective rotation with zero angular momentum. For certain
plastic and viscous media in two dimensions the optimal path is the orbit of a
charged particle on a surface of constant negative curvature with magnetic
field whose total flux is half a quantum unit.Comment: 4 pages revtex, 4 figures + animation in multiframe GIF forma
Comment on ``Two Time Scales and Violation of the Fluctuation-Dissipation Theorem in a Finite Dimensional Model for Structural Glasses''
In cond-mat/0002074 Ricci-Tersenghi et al. find two linear regimes in the
fluctuation-dissipation relation between density-density correlations and
associated responses of the Frustrated Ising Lattice Gas. Here we show that
this result does not seem to correspond to the equilibrium quantities of the
model, by measuring the overlap distribution P(q) of the density and comparing
the FDR expected on the ground of the P(q) with the one measured in the
off-equilibrium experiments.Comment: RevTeX, 1 page, 2 eps figures, Comment on F. Ricci-Tersenghi et al.,
Phys. Rev. Lett. 84, 4473 (2000
Statistical geometry in scalar turbulence
A general link between geometry and intermittency in passive scalar
turbulence is established. Intermittency is qualitatively traced back to events
where tracer particles stay for anomalousy long times in degenerate geometries
characterized by strong clustering. The quantitative counterpart is the
existence of special functions of particle configurations which are
statistically invariant under the flow. These are the statistical integrals of
motion controlling the scalar statistics at small scales and responsible for
the breaking of scale invariance associated to intermittency.Comment: 4 pages, 5 figure
The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans
BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07
Mapping liver fat female-dependent quantitative trait loci in collaborative cross mice
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the western world, with spectrum from simple steatosis to non-alcoholic steatohepatitis, which can progress to cirrhosis. NAFLD developments are known to be affected by host genetic background. Herein we emphasize the power of collaborative cross (CC) mouse for dissecting this complex trait and revealing quantitative trait loci (QTL) controlling hepatic fat accumulation in mice. 168 female and 338 male mice from 24 and 37 CC lines, respectively, of 18-20 weeks old, maintained on standard rodent diet, since weaning. Hepatic fat content was assessed, using dual DEXA scan in the liver. Using the available high-density genotype markers of the CC line, QTL mapping associated with percentage liver fat accumulation was performed. Our results revealed significant fatty liver accumulation QTL that were specifically, mapped in females. Two significant QTLs on chromosomes 17 and 18, with genomic intervals 3 and 2 Mb, respectively, were mapped. A third QTL, with a less significant P value, was mapped to chromosome 4, with genomic interval of 2 Mb. These QTLs were named Flal1-Flal3, referring to Fatty Liver Accumulation Locus 1-3, for the QTLs on chromosomes 17, 18, and 4, respectively. Unfortunately, no QTL was mapped with males. Searching the mouse genome database suggested several candidate genes involved in hepatic fat accumulation. Our results show that susceptibility to hepatic fat accumulations is a complex trait, controlled by multiple genetic factors in female mice, but not in male
Quantum dynamics and breakdown of classical realism in nonlinear oscillators
The dynamics of a quantum nonlinear oscillator is studied in terms of its
quasi-flow, a dynamical mapping of the classical phase plane that represents
the time-evolution of the quantum observables. Explicit expressions are derived
for the deformation of the classical flow by the quantum nonlinearity in the
semiclassical limit. The breakdown of the classical trajectories under the
quantum nonlinear dynamics is quantified by the mismatch of the quasi-flow
carried by different observables. It is shown that the failure of classical
realism can give rise to a dynamical violation of Bell's inequalities.Comment: RevTeX 4 pages, no figure
- …
