8 research outputs found

    Metaheuristic optimization of reinforced concrete footings

    Get PDF
    The primary goal of an engineer is to find the best possible economical design and this goal can be achieved by considering multiple trials. A methodology with fast computing ability must be proposed for the optimum design. Optimum design of Reinforced Concrete (RC) structural members is the one of the complex engineering problems since two different materials which have extremely different prices and behaviors in tension are involved. Structural state limits are considered in the optimum design and differently from the superstructure members, RC footings contain geotechnical limit states. This study proposes a metaheuristic based methodology for the cost optimization of RC footings by employing several classical and newly developed algorithms which are powerful to deal with non-linear optimization problems. The methodology covers the optimization of dimensions of the footing, the orientation of the supported columns and applicable reinforcement design. The employed relatively new metaheuristic algorithms are Harmony Search (HS), Teaching-Learning Based Optimization algorithm (TLBO) and Flower Pollination Algorithm (FPA) are competitive for the optimum design of RC footings

    Responses

    Full text link

    Resource constrained project scheduling by harmony search algorithm

    No full text
    The construction industry is nonhomogeneous and also managing construction projects are more difficult in today's world. Construction projects are huge and contractors want to accomplish them within a short time in this fast changing era. Therefore, the time and resource have to be managed for a successful construction project management. Resource leveling is one of the primary tools used for managing resources. The target is leveling the resources within a minimum time period to complete the project successfully. Resource constrained project scheduling problems (RCPSP) are a Non-deterministic Polynomial-time hard (NP-hard) problem therefore heuristic methods can be used to solve it. This paper presents a harmony search method for solving the RCPSP. In order to compare the performance of the developed software three examples were chosen from the literature. Computational results indicate that the harmony search method is more effective, rapid and suitable for the RCPSP than existing solutions
    corecore