1,229 research outputs found
Information sharing and credit : firm-level evidence from transition countries
We investigate whether information sharing among banks has affected credit market performance in the transition countries of Eastern Europe and the former Soviet Union, using a large sample of firm-level data. Our estimates show that information sharing is associated with improved availability and lower cost of credit to firms. This correlation is stronger for opaque firms than transparent ones and stronger in countries with weak legal environments than in those with strong legal environments. In cross-sectional estimates, we control for variation in country-level aggregate variables that may affect credit, by examining the differential impact of information sharing across firm types. In panel estimates, we also control for the presence of unobserved heterogeneity at the firm level, as well as for changes in macroeconomic variables and the legal environment
The Alliance for Cellular Signaling Plasmid Collection: A Flexible Resource for Protein Localization Studies and Signaling Pathway Analysis
Cellular responses to inputs that vary both temporally and spatially are determined by complex relationships between the components of cell signaling networks. Analysis of these relationships requires access to a wide range of experimental reagents and techniques, including the ability to express the protein components of the model cells in a variety of contexts. As part of the Alliance for Cellular Signaling, we developed a robust method for cloning large numbers of signaling ORFs into Gateway® entry vectors, and we created a wide range of compatible expression platforms for proteomics applications. To date, we have generated over 3000 plasmids that are available to the scientific community via the American Type Culture Collection. We have established a website at www.signaling-gateway.org/data/plasmid/ that allows users to browse, search, and blast Alliance for Cellular Signaling plasmids. The collection primarily contains murine signaling ORFs with an emphasis on kinases and G protein signaling genes. Here we describe the cloning, databasing, and application of this proteomics resource for large scale subcellular localization screens in mammalian cell lines
Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland
1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct
The regional aerosol-climate model REMO-HAM
REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies
Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme
Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified.
Methodology/Principal Findings:
Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora.
Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description
Laparoscopic mesh-augmented hiatoplasty without fundoplication as a method to treat large hiatal hernias
PURPOSE: Laparoscopic hiatal hernia repair with additional fundoplication is a commonly recommended standard surgical treatment for symptomatic large hiatal hernias with paraesophageal involvement (PEH). However, due to the risk of persistent side effects, this method remains controversial. Laparoscopic mesh-augmented hiatoplasty without fundoplication (LMAH), which combines hiatal repair and mesh reinforcement, might therefore be an alternative. METHODS: In this retrospective study of 55 (25 male, 30 female) consecutive PEH patients, the perioperative course and symptomatic outcomes were analyzed after a mean follow-up of 72 months. RESULTS: The mean DeMeester symptom score decreased from 5.1 to 1.8 (P < 0.001) and the gas bloating value decreased from 1.2 to 0.5 (P = 0.001). The dysphagia value was 0.7 before surgery and 0.6 (P = 0.379) after surgery. The majority of the patients were able to belch and vomit (96 and 92 %, respectively). Acid-suppressive therapy on a regular basis was discontinued in 68 % of patients. In 4 % of patients, reoperation was necessary due to recurrent or persistent reflux. A mesh-related stenosis that required endoscopic dilatation occurred in 2 % of patients. CONCLUSIONS: LMAH is feasible, safe and provides an anti-reflux effect, even without fundoplication. As operation-related side effects seem to be rare, LMAH is a potential treatment option for large hiatal hernias with paraesophageal involvement
One or two trainees per workplace in a structured multimodality training curriculum for laparoscopic surgery? Study protocol for a randomized controlled trial – DRKS00004675
BACKGROUND: Laparoscopy training courses have been established in many centers worldwide to ensure adequate skill learning before performing operations on patients. Different training modalities and their combinations have been compared regarding training effects. Multimodality training combines different approaches for optimal training outcome. However, no standards currently exist for the number of trainees assigned per workplace. METHODS: This is a monocentric, open, three-arm randomized controlled trial. The participants are laparoscopically-naive medical students from Heidelberg University. After a standardized introduction to laparoscopic cholecystectomy (LC) with online learning modules, the participants perform a baseline test for basic skills and LC performance on a virtual reality (VR) trainer. A total of 100 students will be randomized into three study arms, in a 2:2:1 ratio. The intervention groups participate individually (Group 1) or in pairs (Group 2) in a standardized and structured multimodality training curriculum. Basic skills are trained on the box and VR trainers. Procedural skills and LC modules are trained on the VR trainer. The control group (Group C) does not receive training between tests. A post-test is performed to reassess basic skills and LC performance on the VR trainer. The performance of a cadaveric porcine LC is then measured as the primary outcome using standardized and validated ratings by blinded experts with the Objective Structured Assessment of Technical Skills. The Global Operative Assessment of Laparoscopic Surgical skills score and the time taken for completion are used as secondary outcome measures as well as the improvement of skills and VR LC performance between baseline and post-test. Cognitive tests and questionnaires are used to identify individual factors that might exert influence on training outcome. DISCUSSION: This study aims to assess whether workplaces in laparoscopy training courses for beginners should be used by one trainee or two trainees simultaneously, by measuring the impact on operative performance and learning curves. Possible factors of influence, such as the role of observing the training partner, exchange of thoughts, active reflection, model learning, motivation, pauses, and sympathy will be explored in the data analysis. This study will help optimize the efficiency of laparoscopy training courses. TRIAL REGISTRATION NUMBER: DRKS0000467
Multi-decade changes in pollen season onset, duration, and intensity: a concern for public health?
Longitudinal shifts in pollen onset, duration, and intensity are public health concerns for the growing number of individuals with pollen sensitization. National analyses of long-term pollen changes are influenced by how a plant's main pollen season (MPS) is defined. Prior Swiss studies have inconsistently applied MPS definitions, leading to heterogeneous conclusions regarding the magnitude, directionality, and significance of multi-decade pollen trends. We examined national pollen data in Switzerland between 1990 and 2020, applying six MPS definitions (2 percentage-based and 4 threshold-based) to twelve relevant allergenic plants. We analyzed changes in pollen season using both linear regression and locally estimated scatterplot smoothing (LOESS). For 4 of the 12 plant species, there is unanimity between definitions regarding earlier onset of pollen season (p < 0.05), with magnitude of 31-year change dependent on specific MPS definition (hazel: 9-18 days; oak: 5-13 days; grasses: 8-25 days; and nettle/hemp: 6-25 days). There is also consensus (p < 0.05) for modified MPS duration among hazel (21-104% longer), nettle/hemp (8-52% longer), and ash (18-38% shorter). Between-definition agreement is highest for MPS intensity analysis, with consensus for significant increases in seasonal pollen quantity (p < 0.05) among hazel, birch, oak, beech, and nettle/hemp. The largest relative intensification is noted for hazel (110-146%) and beech (162-237%). LOESS analysis indicates that these multi-decade pollen changes are typically nonlinear. The robustness of MPS definitions is highly dependent on annual pollen accumulation, with definition choice particularly influential for long-term analysis of low-pollen plants such as ragweed. We identify systematic differences between MPS definitions and suggest future aerobiologic studies apply multiple definitions to minimize bias. In summary, national pollen onset, duration, and intensity have shifted for some plants in Switzerland, with MPS definition choice affecting magnitude and significance of these variations. Future public health research can determine whether these temporal and quantitative pollen changes correlate with longitudinal differences in population pollen sensitization
Ground Motion Relations While TBM Drilling in Unconsolidated Sediments
The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6–20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1–80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3–5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30–50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes
- …
