205 research outputs found
Genetic networks controlling retinal injury.
PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury.
METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases.
RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord.
CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes
Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization
During late peri-implantation development, porcine conceptuses undergo a rapid (2–3 hrs) morphological transformation from a 10 mm sphere to a thin filamentous form greater than 150 mm in length. Elongation of the conceptus is important for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. Genes involved with triggering this unique transition in conceptus development are not well defined. Objective of the present study was to utilize suppression subtractive hybridization (SSH) to characterize the change in gene expression during conceptus transformation from spherical (8–9 mm) to tubular (15–40 mm) to early filamentous (>150 mm) morphology. Spherical, tubular, and filamentous conceptuses were collected from pregnant gilts and subjected to SSH. Forward and reverse subtractions were performed to identify candidate genes differentially expressed during spherical to tubular and tubular to filamentous transition. A total of 384 transcripts were differentially screened to ensure unique expression. Of the transcripts screened, sequences were obtained for 142 that were confirmed to be differentially expressed among the various morphologies. Gene expression profiles during rapid trophoblastic elongation were generated for selected mRNAs using quantitative real-time PCR. During the transition from tubular to early filamentous conceptuses, s-adenosylhomocysteine hydrolase and heat shock cognate 70 kDa expression were significantly enhanced. A novel unknown gene was isolated and shown to be significantly up-regulated at the onset of rapid trophoblastic elongation and further enhanced in filamentous conceptuses
Progesterone and Luteinizing hormone secretion patterns in early pregnant gilts
Abstract We studied luteinizing hormone (LH) pulsatility and episodic progesterone release of the corpus luteum (CL) on Day 11 and Day 21 in inseminated gilts and aimed to establish a relationship between these two hormones. Blood was collected at 15-minute intervals for 12 hours on Days 11, 16, and 21 from a vena cava caudalis catheter. At euthanasia eight gilts were pregnant and six gilts were not pregnant. Progesterone parameters (basal, mean, pulse frequency, and pulse amplitude) did not differ between pregnant and non-pregnant gilts on Day 11, LH pulse frequency and amplitude tended to differ (p = 0.07 and p = 0.079). In pregnant gilts basal and mean progesterone, progesterone pulse amplitude and frequency declined significantly from Day 11 to Day 21 (p <0.05). A significant decline was also seen in the LH pulse amplitude from Day 11 to Day 21 (p <0.05). None of the LH pulses was followed by a progesterone pulse within 1 hour on Day 21. On Day 11 and Day 21 appeared a synchronicity in the LH pulse pattern, as there were two or three LH pulses in 12 hours and these LH pulses appeared in the same time window. We conclude that on Day 11 and Day 21 of pregnancy in gilts progesterone pulses do not follow an LH pulse within one hour. Further we demonstrated that the successful or not successful formation of a CL of pregnancy is independent of progesterone release on Day 11 after insemination. We confirmed the decline of progesterone from Day 11 to Day 21 in the vena cava caudalis and could demonstrate that this decline is partly due to lower progesterone pulse amplitude and frequency and that the decline occurs simultaneously with a decline in LH pulse amplitude.Peer reviewe
Endometrial caspase 1 and interleukin-18 expression during the estrous cycle and peri-implantation period of porcine pregnancy and response to early exogenous estrogen administration
<p>Abstract</p> <p>Background</p> <p>The role for endometrial secretion of cytokines during the establishment of pregnancy in a number of mammals is well established. The current study determined endometrial expression of caspase 1 (CASP1) and interleukin-18 (IL18) during the estrous cycle and early pregnancy, and following early estrogen administration, which induces conceptus loss during early development in pigs.</p> <p>Methods</p> <p>Gilts were hysterectomized on either D 0, 5, 10, 12, 15 and 18 of the estrous cycle, or D 10, 12, 15 or 18 of pregnancy. The abundance of endometrial CASP1 mRNA was unaffected by day of the estrous cycle, however there was a 6 and 10-fold increase in expression on D 15 and 18 of pregnancy. Endometrial expression of IL18 mRNA increased 5-fold between D 10 to 18 in cyclic and pregnant gilts. Total recoverable IL18 in uterine flushings was greater in pregnant compared to cyclic gilts on D 15 and 18.</p> <p>In the second experiment, mated gilts were treated with either corn oil (CO) or estrogen (E) on D 9 and 10 and hysterectomized on either D 10, 12, 13, 15 or 17 of pregnancy. The current study localizes the presence of CASP1 to the epithelial layer of the endometrium for the first time. Further, a day × treatment interaction was detected for endometrial CASP1 mRNA and protein abundance as E stimulated an earlier increase on D 13 compared to CO gilts. Although IL18 mRNA expression remained unaltered from the E treatment, protein abundance was significantly attenuated on D 15 and 18 in response to E treatment.</p> <p>Conclusions</p> <p>Endometrial expression of CASP1 and IL18 is associated with establishment of pregnancy in pigs. Alteration of CASP1 and IL18 following premature exposure of the uterus to estrogen during early pregnancy may contribute to conceptus loss between Days 15 to 18 of pregnancy.</p
Optimizing Egg Recovery From Wild Northern Corn Rootworm Beetles (Coleoptera: Chrysomelidae)
The northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), is one of the most important insect pests in the U.S. Corn Belt. Efforts to obtain eggs from wild northern corn rootworm populations using techniques developed for other rootworm species have been unsuccessful due to lack of oviposition. In 2016, we evaluated four oviposition media in choice tests within each of three female densities in 30.5 × 30.5 × 30.5 cm BugDorm cages. The number of eggs laid per female was significantly affected by female density and the interaction of female density × oviposition media, but oviposition was relatively poor in all oviposition media (1.2 eggs per female when averaging the three female densities and all oviposition media). Single females were also evaluated in nonchoice assays in 6 cm × 6 cm × 8 cm clear plastic boxes and averaged up to 108 eggs per female depending on the oviposition media. In 2017, the cumulative number of eggs laid per female in boxes with one female was not significantly different from the number of eggs laid per female in boxes with 3 females. In 2018, the cumulative number of eggs laid per female was not significantly different between female densities of 1, 3, 5, or 10 females per box. Total egg production per box therefore increased as female density increased. More than 27,000 wild northern corn rootworm eggs were collected from just 190 females when collected relatively early in the field season. We now have an efficient and robust system for obtaining eggs from wild northern corn rootworm females
Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma
Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60–100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10−6for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury.</p
A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation
Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve
Identification of proteins involved in neural progenitor cell targeting of gliomas
<p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p
Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study
The transient visual response of feline dorsal lateral geniculate nucleus (dLGN) cells was studied under control conditions and during the application of repetitive transcranial magnetic stimulation at 1 Hz (rTMS@1Hz) on the primary visual cortex (V1). The results show that rTMS@1Hz modulates the firing mode of Y cells, inducing an increase in burst spikes and a decrease in tonic firing. On the other hand, rTMS@1Hz modifies the spatiotemporal characteristics of receptive fields of X cells, inducing a delay and a decrease of the peak response, and a change of the surround/center amplitude ratio of RF profiles. These results indicate that V1 controls the activity of the visual thalamus in a different way in the X and Y pathways, and that this feedback control is consistent with functional roles associated with each cell type
- …
