9,581 research outputs found
Spectral properties in the charge density wave phase of the half-filled Falicov-Kimball Model
We study the spectral properties of charge density wave (CDW) phase of the
half-filled spinless Falicov-Kimball model within the framework of the
Dynamical Mean Field Theory. We present detailed results for the spectral
function in the CDW phase as function of temperature and . We show how the
proximity of the non-fermi liquid phase affects the CDW phase, and show that
there is a region in the phase diagram where we get a CDW phase without a gap
in the spectral function. This is a radical deviation from the mean-field
prediction where the gap is proportional to the order parameter
Dynamical Mean-Field Theory - from Quantum Impurity Physics to Lattice Problems
Since the first investigation of the Hubbard model in the limit of infinite
dimensions by Metzner and Vollhardt, dynamical mean-field theory (DMFT) has
become a very powerful tool for the investigation of lattice models of
correlated electrons. In DMFT the lattice model is mapped on an effective
quantum impurity model in a bath which has to be determined self-consistently.
This approach lead to a significant progress in our understanding of typical
correlation problems such as the Mott transition; furthermore, the combination
of DMFT with ab-initio methods now allows for a realistic treatment of
correlated materials. The focus of these lecture notes is on the relation
between quantum impurity physics and the physics of lattice models within DMFT.
Issues such as the observability of impurity quantum phase transitions in the
corresponding lattice models are discussed in detail.Comment: 18 pages, 5 figures, invited paper for the Proceedings of the "3rd
International Summer School on Strongly Correlated Systems, Debrecen, 2004
Classification cards applied to team and individual learning.
Thesis (Ed.M.)--Boston Universit
Sound Velocity Anomaly at the Mott Transition: application to organic conductors and V2O3
Close to the Mott transition, lattice degrees of freedom react to the
softening of electron degrees of freedom. This results in a change of lattice
spacing, a diverging compressibility and a critical anomaly of the sound
velocity. These effects are investigated within a simple model, in the
framework of dynamical mean-field theory. The results compare favorably to
recent experiments on the layered organic \kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl
conductor . We predict that effects of a similar magnitude are expected for
V2O3, despite the much larger value of the elastic modulus of this material.Comment: New discussion of the relation between the sound-velocity and the
compressibility has been adde
Competing itinerant and localized states in strongly correlated BaVS
The electronic structure of the quasi-lowdimensional vanadium sulfide \bavs3
is investigated for the different phases above the magnetic ordering
temperature. By means of density functional theory and its combination with
dynamical-mean field theory, we follow the evolution of the relevant low-energy
electronic states on cooling. Hence we go in the metallic regime from the room
temperature hexagonal phase to the orthorhombic phase after the first
structural transition, and close with the monoclinic insulating phase below the
metal-insulator transition. Due to the low symmetry and expected intersite
correlations, the latter phase is treated within cellular dynamical mean-field
theory. It is generally discussed how the intriguing interplay between
band-structure and strong-correlation effects leads to the stabilization of the
various electronic phases with decreasing temperature.Comment: 12 pages, submitted to PR
Magnetic response of SrRuO: quasi-local spin fluctuations due to Hund's coupling
We study the magnetic susceptibility in the normal state of SrRuO
using dynamical mean-field theory including dynamical vertex corrections.
Besides the well known incommensurate response, our calculations yield
quasi-local spin fluctuations which are broad in momentum and centered around
the point, in agreement with recent inelastic neutron scattering
experiments [P. Steffens, et al., Phys. Rev. Lett. 122, 047004 (2019)]. We show
that these quasi-local fluctuations are controlled by the Hund's coupling and
account for the dominant contribution to the momentum-integrated response.
While all orbitals contribute equally to the incommensurate response, the
enhanced point response originates from the planar xy orbital.Comment: 6 pages, 5 figure
Semiclassical Analysis of Extended Dynamical Mean Field Equations
The extended Dynamical Mean Field Equations (EDMFT) are analyzed using
semiclassical methods for a model describing an interacting fermi-bose system.
We compare the semiclassical approach with the exact QMC (Quantum Montecarlo)
method. We found the transition to an ordered state to be of the first order
for any dimension below four.Comment: RevTex, 39 pages, 16 figures; Appendix C added, typos correcte
Optical conductivity of Mn doped GaAs
We study the optical conductivity in the III-V diluted magnetic semiconductor
GaMnAs and compare our calculations to available experimental data. Our model
study is able to reproduce both qualitatively and quantitatively the observed
measurements. We show that compensation (low carrier density) leads, in
agreement to the observed measurements to a red shift of the broad peak located
at approximately 200 meV for the optimally annealed sample. The non
perturbative treatment appears to be essential, otherwise a blueshift and an
incorrect amplitude would be obtained. By calculating the Drude weight (order
parameter) we establish the metal-insulator phase diagram. We indeed find that
Mn doped GaAs is close to the metal-insulator transition and that for 5 and
7 doped samples, 20 of the carriers only are delocalized. We have found
that the optical mass is approximately 2 m. We have also interesting
results for overdoped samples which could be experimentally realized by Zn
codoping.Comment: the manuscript has been extended, new figures are include
- …
