9,581 research outputs found

    Spectral properties in the charge density wave phase of the half-filled Falicov-Kimball Model

    Full text link
    We study the spectral properties of charge density wave (CDW) phase of the half-filled spinless Falicov-Kimball model within the framework of the Dynamical Mean Field Theory. We present detailed results for the spectral function in the CDW phase as function of temperature and UU. We show how the proximity of the non-fermi liquid phase affects the CDW phase, and show that there is a region in the phase diagram where we get a CDW phase without a gap in the spectral function. This is a radical deviation from the mean-field prediction where the gap is proportional to the order parameter

    Dynamical Mean-Field Theory - from Quantum Impurity Physics to Lattice Problems

    Full text link
    Since the first investigation of the Hubbard model in the limit of infinite dimensions by Metzner and Vollhardt, dynamical mean-field theory (DMFT) has become a very powerful tool for the investigation of lattice models of correlated electrons. In DMFT the lattice model is mapped on an effective quantum impurity model in a bath which has to be determined self-consistently. This approach lead to a significant progress in our understanding of typical correlation problems such as the Mott transition; furthermore, the combination of DMFT with ab-initio methods now allows for a realistic treatment of correlated materials. The focus of these lecture notes is on the relation between quantum impurity physics and the physics of lattice models within DMFT. Issues such as the observability of impurity quantum phase transitions in the corresponding lattice models are discussed in detail.Comment: 18 pages, 5 figures, invited paper for the Proceedings of the "3rd International Summer School on Strongly Correlated Systems, Debrecen, 2004

    Sound Velocity Anomaly at the Mott Transition: application to organic conductors and V2O3

    Full text link
    Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic \kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl conductor . We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.Comment: New discussion of the relation between the sound-velocity and the compressibility has been adde

    Competing itinerant and localized states in strongly correlated BaVS3_3

    Full text link
    The electronic structure of the quasi-lowdimensional vanadium sulfide \bavs3 is investigated for the different phases above the magnetic ordering temperature. By means of density functional theory and its combination with dynamical-mean field theory, we follow the evolution of the relevant low-energy electronic states on cooling. Hence we go in the metallic regime from the room temperature hexagonal phase to the orthorhombic phase after the first structural transition, and close with the monoclinic insulating phase below the metal-insulator transition. Due to the low symmetry and expected intersite correlations, the latter phase is treated within cellular dynamical mean-field theory. It is generally discussed how the intriguing interplay between band-structure and strong-correlation effects leads to the stabilization of the various electronic phases with decreasing temperature.Comment: 12 pages, submitted to PR

    Magnetic response of Sr2_2RuO4_4: quasi-local spin fluctuations due to Hund's coupling

    Full text link
    We study the magnetic susceptibility in the normal state of Sr2_2RuO4_4 using dynamical mean-field theory including dynamical vertex corrections. Besides the well known incommensurate response, our calculations yield quasi-local spin fluctuations which are broad in momentum and centered around the Γ\Gamma point, in agreement with recent inelastic neutron scattering experiments [P. Steffens, et al., Phys. Rev. Lett. 122, 047004 (2019)]. We show that these quasi-local fluctuations are controlled by the Hund's coupling and account for the dominant contribution to the momentum-integrated response. While all orbitals contribute equally to the incommensurate response, the enhanced Γ\Gamma point response originates from the planar xy orbital.Comment: 6 pages, 5 figure

    ICSID Arbitration Proceedings: Practical Aspects

    Get PDF

    Semiclassical Analysis of Extended Dynamical Mean Field Equations

    Full text link
    The extended Dynamical Mean Field Equations (EDMFT) are analyzed using semiclassical methods for a model describing an interacting fermi-bose system. We compare the semiclassical approach with the exact QMC (Quantum Montecarlo) method. We found the transition to an ordered state to be of the first order for any dimension below four.Comment: RevTex, 39 pages, 16 figures; Appendix C added, typos correcte

    Optical conductivity of Mn doped GaAs

    Full text link
    We study the optical conductivity in the III-V diluted magnetic semiconductor GaMnAs and compare our calculations to available experimental data. Our model study is able to reproduce both qualitatively and quantitatively the observed measurements. We show that compensation (low carrier density) leads, in agreement to the observed measurements to a red shift of the broad peak located at approximately 200 meV for the optimally annealed sample. The non perturbative treatment appears to be essential, otherwise a blueshift and an incorrect amplitude would be obtained. By calculating the Drude weight (order parameter) we establish the metal-insulator phase diagram. We indeed find that Mn doped GaAs is close to the metal-insulator transition and that for 5% and 7% doped samples, 20% of the carriers only are delocalized. We have found that the optical mass is approximately 2 me_{e}. We have also interesting results for overdoped samples which could be experimentally realized by Zn codoping.Comment: the manuscript has been extended, new figures are include
    corecore