4,024 research outputs found
Reactor power systems for manned earth orbital applications
Design requirements for reactor power system of manned earth orbital space statio
The bicomplex quantum Coulomb potential problem
Generalizations of the complex number system underlying the mathematical
formulation of quantum mechanics have been known for some time, but the use of
the commutative ring of bicomplex numbers for that purpose is relatively new.
This paper provides an analytical solution of the quantum Coulomb potential
problem formulated in terms of bicomplex numbers. We define the problem by
introducing a bicomplex hamiltonian operator and extending the canonical
commutation relations to the form [X_i,P_k] = i_1 hbar xi delta_{ik}, where xi
is a bicomplex number. Following Pauli's algebraic method, we find the
eigenvalues of the bicomplex hamiltonian. These eigenvalues are also obtained,
along with appropriate eigenfunctions, by solving the extension of
Schrodinger's time-independent differential equation. Examples of solutions are
displayed. There is an orthonormal system of solutions that belongs to a
bicomplex Hilbert space.Comment: Clarifications; some figures removed; version to appear in Can. J.
Phy
Soliton quantization and internal symmetry
We apply the method of collective coordinate quantization to a model of
solitons in two spacetime dimensions with a global symmetry. In
particular we consider the dynamics of the charged states associated with
rotational excitations of the soliton in the internal space and their
interactions with the quanta of the background field (mesons). By solving a
system of coupled saddle-point equations we effectively sum all tree-graphs
contributing to the one-point Green's function of the meson field in the
background of a rotating soliton. We find that the resulting one-point function
evaluated between soliton states of definite charge exhibits a pole on
the meson mass shell and we extract the corresponding S-matrix element for the
decay of an excited state via the emission of a single meson using the standard
LSZ reduction formula. This S-matrix element has a natural interpretation in
terms of an effective Lagrangian for the charged soliton states with an
explicit Yukawa coupling to the meson field. We calculate the leading-order
semi-classical decay width of the excited soliton states discuss the
consequences of these results for the hadronic decay of the resonance
in the Skyrme model.Comment: 23 pages, LA-UR-93-299
Free fields via canonical transformations of matter-coupled 2D dilaton gravity models
It is shown that the 1+1-dimensional matter-coupled Jackiw-Teitelboim model
and the model with an exponential potential can be converted by means of
appropriate canonical transformations into a bosonic string theory propagating
on a flat target space with an indefinite signature. This makes it possible to
consistently quantize these models in the functional Schroedinger
representation thus generalizing recent results on CGHS theory.Comment: 15 pages, Late
Baryon masses at second order in large- chiral perturbation theory
We consider flavor breaking in the the octet and decuplet baryon masses at
second order in large- chiral perturbation theory, where is the number
of QCD colors. We assume that , where is the number of light quark
flavors, and are the parameters controlling
flavor breaking in chiral perturbation theory. We consistently include
non-analytic contributions to the baryon masses at orders , , and . The corrections are small for
the relations that follow from symmetry alone, but the corrections to
the large- relations are large and have the wrong sign. Chiral
power-counting and large- consistency allow a 2-loop contribution at order
, and a non-trivial explicit calculation is required to show
that this contribution vanishes. At second order in the expansion, there are
eight relations that are non-trivial consequences of the expansion, all
of which are well satisfied within the experimental errors. The average
deviation at this order is 7 \MeV for the \De I = 0 mass differences and
0.35 \MeV for the \De I \ne 0 mass differences, consistent with the
expectation that the error is of order .Comment: 19 pages, 2 uuencoded ps figs, uses revte
Quantum Hamilton-Jacobi equation
The nontrivial transformation of the phase space path integral measure under
certain discretized analogues of canonical transformations is computed. This
Jacobian is used to derive a quantum analogue of the Hamilton-Jacobi equation
for the generating function of a canonical transformation that maps any quantum
system to a system with a vanishing Hamiltonian. A formal perturbative solution
of the quantum Hamilton-Jacobi equation is given.Comment: 4 pages, RevTe
Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State
The fractional quantum Hall effect is observed at low field, in a regime
where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2
excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with
previous measurements performed on samples with similar mobility, but with
electronic density larger by a factor of two. The role of disorder on the
nu=5/2 gap is examined. Comparison between experiment and theory indicates that
a large discrepancy remains for the intrinsic gap extrapolated from the
infinite mobility (zero disorder) limit. In contrast, no such large discrepancy
is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in
the low-field regime implies that inclusion of non-perturbative Landau level
mixing may be necessary to better understand the energetics of half-filled
fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande
Nucleon-Nucleon Scattering under Spin-Isospin Reversal in Large-N_c QCD
The spin-flavor structure of certain nucleon-nucleon scattering observables
derived from the large N_c limit of QCD in the kinematical regime where
time-dependent mean-field theory is valid is discussed. In previous work, this
regime was taken to be where the external momentum was of order N_c which
precluded the study of differential cross sections in elastic scattering. Here
it is shown that the regime extends down to order N_c^{1/2} which includes the
higher end of the elastic regime. The prediction is that in the large N_c
limit, observables describable via mean-field theory are unchanged when the
spin and isospin of either nucleon are both flipped. This prediction is tested
for proton-proton and neutron-proton elastic scattering data and found to fail
badly. We argue that this failure can be traced to a lack of a clear separation
of scales between momentum of order N_c^{1/2} and N_c^1 when N_c is as small as
three. The situation is compounded by an anomalously low particle production
threshold due to approximate chiral symmetry.Comment: 5 pages, 1 figur
Current-induced nuclear-spin activation in a two-dimensional electron gas
Electrically detected nuclear magnetic resonance was studied in detail in a
two-dimensional electron gas as a function of current bias and temperature. We
show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps,
can induce a re-entrant and even enhanced nuclear spin signal compared with the
signal obtained under similar thermal equilibrium conditions at zero current
bias. Our observations suggest that dynamic nuclear spin polarization by small
current flow is possible in a two-dimensional electron gas, allowing for easy
manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig
Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina
Bidirectional reflectance of a surface is defined as the ratio of the
scattered radiation at the detector to the incident irradiance as a function of
geometry. The accurate knowledge of the bidirectional reflection function (BRF)
of layers composed of discrete, randomly positioned scattering particles is
very essential for many remote sensing, engineering, biophysical applications
and in different areas of Astrophysics. The computations of BRF's for plane
parallel particulate layers are usually reduced to solve the radiative transfer
equation (RTE) by the existing techniques. In this work we present our
laboratory data on bidirectional reflectance versus phase angle for two sample
sizes of 0.3 and 1 of Alumina for the He-Ne laser at 632.8 nm (red) and
543.5nm(green) wavelength. The nature of the phase curves of the asteroids
depends on the parameters like- particle size, composition, porosity, roughness
etc. In our present work we analyse the data which are being generated using
single scattering phase function i.e. Mie theory considering particles to be
compact sphere. The well known Hapke formula will be considered along with
different particle phase function such as Mie and Henyey Greenstein etc to
model the laboratory data obtained at the asteroid laboratory of Assam
University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the
Astronomical Society of Australia (PASA) on 8 June, 2011
- …
