1,326 research outputs found

    Energy Distribution in disordered elastic Networks

    Get PDF
    Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed

    Magnetic superlens-enhanced inductive coupling for wireless power transfer

    Full text link
    We investigate numerically the use of a negative-permeability "perfect lens" for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material [Urzhumov et al., Phys. Rev. B, 19, 8312 (2011)]. In the limit of vanishingly small radius of the coils, and large width of the metamaterial slab, the numerical simulations are in excellent agreement with the analytical model. Both the idealized analytical and realistic numerical models predict similar trends with respect to metamaterial loss and anisotropy. Applying the numerical models, we further analyze the impact of finite coil size and finite width of the slab. We find that, even for these less idealized geometries, the presence of the magnetic slab greatly enhances the coupling between the two coils, including cases where significant loss is present in the slab. We therefore conclude that the integration of a metamaterial slab into a wireless power transfer system holds promise for increasing the overall system performance

    A large-scale proteogenomics study of apicomplexan pathogens-Toxoplasma gondii and Neospora caninum

    Get PDF
    Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large‐scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta‐analysis. We identified a total of 201 996 and 39 953 peptide‐spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein‐level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA‐Seq‐derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA‐Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes

    Pembuatan Simulasi 3D Virtual Reality Berbasis Android Sebagai Alat Bantu Terapi Acrophobia

    Full text link
    Virtual Reality is three-dimensional technology and developing rapidly at the moment. Therefore, Virtual Reality technology implementation will be useful for people. One of this implementation is in clinical fields, which is for handling phobia. One of the therapies provided by a therapist to patients is by using flooding technique that faces the patient on the situation that confronts the making of fear until no longer feel anxious. In some cases, the flooding technique for acrophobia almost impossible because of the level of dangerous and the expensive cost.By using game engine Unity and Multimedia Development Life Cycle (MDLC) method which has six stages, concept, design, material collection, assembly, testing, and distribution, application development Android-based Virtual Reality will resolve the issue.Based on the results of Black-box method, functions from the application of virtual reality simulation as a tool for the treatment of acrophobia has already worked well. Further research is needed to find out the impact of application in the medical sector.Acrophobia merupakan jenis fobia yang membuat individu merasakan kegelisahan, ketegangan, dan rasa tidak nyaman ketika berada pada ketinggian. Hal itu yang membuat penderita acrophobia tidak bebas melakukan aktivitas sehari-hari. Untuk mengatasinya, dibutuhkan terapi ke psikiater untuk menyembuhkan acrophobia tersebut. Dalam teknik terapi, ada yang dinamakan flooding, yaitu menempatkan penderita ke situasi yang membuat ketakutan sampai penderita tidak merasa cemas. Teknik flooding sangat berbahaya jika diterapkan pada penderita acrophobia. Teknologi Virtual Reality sudah digunakan untuk menangani penderita acrophobia, tetapi teknologi yang ada masih mahal. Maka dari itu diperlukannya teknologi yang murah supaya penderita acrophobia dapat melakukan terapi dengan aman. Dengan menggunakan Multimedia Development Life Cycle sebagai metode pengembangannya, Unity, dan aplikasi berbasis Android dapat mengatasi masalah tersebut. Pembuatan simulasi 3D Virtual Reality sebagai alat bantu terapi acrophobia berbasis Android telah berhasil dibuat. Namun, diperlukan penelitian lebih lanjut untuk melihat dampak lebih lanjut pada bidang klinis

    Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain.

    Get PDF
    Based on its advanced computing capabilities and ubiquity, the smartphone has rapidly been adopted as a tourism travel tool.With a growing number of users and a wide varietyof applications emerging, the smartphone is fundamentally altering our current use and understanding of the transport network and tourism travel. Based on a review of smartphone apps, this article evaluates the current functionalities used in the domestic tourism travel domain and highlights where the next major developments lie. Then, at a more conceptual level, the article analyses how the smartphone mediates tourism travel and the role it might play in more collaborative and dynamic travel decisions to facilitate sustainable travel. Some emerging research challenges are discussed

    Diagenetic Evolution and Porosity Destruction of Turbiditic Hybrid Arenites and Siliciclastic Sandstones of Foreland Basins: Evidence from the Eocene Hecho Group, Pyrenees, Spain

    Get PDF
    International audienceThis study aims to unravel the impact of diagenetic alterations on porosity loss of foreland-basin turbiditic hybrid arenites and associated siliciclastic sandstones of the Eocene Hecho Group (south-central Pyrenees, Spain). In this succession, hybrid arenites and calclithites are extensively cemented by mesogenetic calcite cement (delta18O VPDB = –10.0 per thousand to –5.8per thousand ; Th, mode = 80° C; salinity mode = 18.8 wt% eq. NaCl), Fe-dolomite (delta18O VPDB = –8.5 per thousand to –6.3 per thousand ) and trace amounts of siderite. The extent of carbonate cementation is interpreted to be related to the amounts of extrabasinal and intrabasinal carbonate grains, which provided nuclei and sources for the precipitation and growth of carbonate cements. Other diagenetic alterations, such as pyrite and albitization, had no impact on reservoir quality. Scarce early diagenetic cements, coupled with abundant ductile carbonate and siliciclastic framework grains, have led to rapid porosity loss owing to compaction. Conversely, abundant quartz in the sandstones prevented rapid loss of porosity by mechanical compaction. Reservoir quality was affected by mesogenetic cementation by quartz overgrowths, calcite and dolomite intergranular pressure dissolution of quartz grains, and formation of fracture-filling calcite cement (delta 18O V-PDB values from –10.4 per thousand to –7.8 per thousand ; Th temperatures of circa 150° C), which are attributed to deep circulation of hot meteoric waters during extensional stages of tectonism. The results of this study illustrate that diagenetic evolution pathways of the arenites and sandstones are closely linked to the variation in detrital composition, particularly the proportion and types of extrabasinal noncarbonates, extrabasinal carbonates, and intrabasinal carbonate grains. These insights suggest that marine turbiditic hybrid arenites and calclithites of foreland basins are subjected to more rapid and extensive porosity loss owing to compaction and cementation than associated siliciclastic sandstones. Degradation of reservoir quality makes these hybrid arenites, calclithites, and sandstones suitable as tight gas reservoirs, but only if fracture porosity and permeability develop during tectonic deformation

    International variation in the definition of ‘main condition' in ICD-coded health data

    Get PDF
    Hospital-based medical records are abstracted to create International Classification of Disease (ICD) coded discharge health data in many countries. The ‘main condition' is not defined in a consistent manner internationally. Some countries employ a ‘reason for admission' rule as the basis for the main condition, while other countries employ a ‘resource use' rule. A few countries have recently transitioned from one of these approaches to the other. The definition of ‘main condition' in such ICD data matters when it is used to define a disease cohort to assign diagnosis-related groups and to perform risk adjustment. We propose a method of harmonizing the international definition to enable researchers and international organizations using ICD-coded health data to aggregate or compare hospital care and outcomes across countries in a consistent manner. Inter-observer reliability of alternative harmonization approaches should be evaluated before finalizing the definition and adopting it worldwid

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting

    Engineering of quantum dot photon sources via electro-elastic fields

    Full text link
    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Natural occurrence of ochratoxin A contamination in commercial black and white pepper products.

    Get PDF
    The concentration of ochratoxin A (OTA) in 120 commercial pepper (84 pre-packed and 36 bulk samples), which consist of local and imported white and black pepper in powder and seed form in Malaysia were determined. The objective of the study was to investigate and compare OTA concentration in black pepper and white pepper being commercialized in Malaysia. Determination method was based on HPLC with fluorescence detection coupled with immunoaffinity column clean-up step. Mobile phase consisted of acetonitrile-water-acetic acid (49.5:49.5:1.0, v/v/v), and flow rate was 1 ml/min. The LOD was 0.02 ng/g, and the average recovery values of OTA ranged from 79.5 to 92.0% in black pepper and 81.2-90.3% in white pepper. A total of 57 samples (47.5%) were contaminated with OTA ranging from 0.15 to 13.58 ng/g. The results showed that there was a significant difference between type of pepper and brands. OTA concentration in black pepper was significantly higher than white pepper (p < 0.05). The highest concentration of ochratoxin, 13.58 ng/g, was detected in a sample of black pepper seed followed by 12.64 ng/g in a sample of black pepper powder, both were bulk samples purchased from open market
    corecore