10,219 research outputs found
Composition Operators on the Dirichlet Space and Related Problems
In this paper we investigate the following problem: when a bounded analytic
function on the unit disk , fixing 0, is such that is orthogonal in ?, and consider the
problem of characterizing the univalent, full self-maps of in
terms of the norm of the composition operator induced. The first problem is
analogous to a celebrated question asked by W. Rudin on the Hardy space setting
that was answered recently ([3] and [15]). The second problem is analogous to a
problem investigated by J. Shapiro in [14] about characterization of inner
functions in the setting of .Comment: 8 pages, 1 figure. See also
http://webdelprofesor.ula.ve/nucleotachira/gchacon or
http://webdelprofesor.ula.ve/humanidades/grchaco
Kaon oscillations in the Standard Model and Beyond using Nf=2 dynamical quarks
We compute non-perturbatively the B-parameters of the complete basis of
four-fermion operators needed to study the Kaon oscillations in the SM and in
its supersymmetric extension. We perform numerical simulations with two
dynamical maximally twisted sea quarks at three values of the lattice spacing
on configurations generated by the ETMC. Unwanted operator mixings and O(a)
discretization effects are removed by discretizing the valence quarks with a
suitable Osterwalder-Seiler variant of the Twisted Mass action. Operators are
renormalized non-perturbatively in the RI/MOM scheme. Our preliminary result
for BK(RGI) is 0.73(3)(3).Comment: 7 pages, 3 figures, 1 table, proceedings of the XXVII Int'l Symposyum
on Lattice Field Theory (LAT2009), July 26-31 2009, Peking University,
Beijing (China
B-physics computations from Nf=2 tmQCD
We present an accurate lattice QCD computation of the b-quark mass, the B and
Bs decay constants, the B-mixing bag-parameters for the full four-fermion
operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated
to the continuum limit and the physical pion mass. We have used Nf = 2
dynamical quark gauge configurations at four values of the lattice spacing
generated by ETMC. Extrapolation in the heavy quark mass from the charm to the
bottom quark region has been carried out using ratios of physical quantities
computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on
Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
K^0-\bar{K}^0 mixing in the Standard Model from Nf=2+1+1 Twisted Mass Lattice QCD
We present preliminary results at {\beta} = 1.95 (a = 0.077 fm) on the first
unquenched N_f=2+1+1 lattice computation of the B_K parameter which controls
the neutral kaon oscillations in the Standard Model. Using N_f=2+1+1 maximally
twisted sea quarks and Osterwalder-Seiler valence quarks we achieve O(a)
improvement and a continuum-like renormalization pattern for the four-fermion
operator. Our results are extrapolated/interpolated to the physical
light/strange quark mass but not yet to the continuum limit. The computation of
the relevant renormalization constants is performed non perturbatively in the
RI'-MOM scheme using dedicated simulations with N_f=4 degenerate sea quark
flavours produced by the ETM collaboration.
We get B_K^{RGI} (a = 0.077) = 0.747(18), which when compared to our previous
unquenched N_f=2 determination and most of the existing results, suggests a
rather weak B_K^{RGI} dependence on the number of dynamical flavours. We are at
the moment analysing lattice data at two additional {\beta} values which will
allow us to perform an extrapolation to the continuum limit.Comment: 7 pages, 8 figures, Proceedings of Lattice 2011, XXIX International
Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, Californi
Estudio quimico biodirigido para la evaluacion de actividad antimalarica de la especie vegetal Piper aduncum mediante test FBIT
Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs
We have developed a position-sensitive scintillation camera with a large area
absorber for use as an advanced Compton gamma-ray camera. At first we tested
GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under
various conditions: the method of surface polishing, the concentration of Ce,
and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only
0.5 mol% Ce, and its surface polished by chemical etching as the scintillator
of our camera. We also made a 1616 cm scintillation camera which
consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the
each of which had 88 anodes with a pitch of 6 mm and coupled to
88 arrays of pixelated 613 mm GSO(Ce) scintillators.
For the readout system of the 576 anodes of the PMTs, we used chained resistors
to reduce the number of readout channels down to 48 to reduce power
consumption. The camera has a position resolution of less than 6mm and a
typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large
area of 1616 cm. %to choose the best scintillator for our project.
Furthermore we constructed a 1616 array of 313 mm
pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had
the position resolution of less than 3mm, over an area of 55 cm,
except for some of the edge pixels; the energy resolution was typically 13%
(FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM
Association of radio polar cap brightening with bright patches and coronal holes
Radio-bright regions near the solar poles are frequently observed in Nobeyama
Radioheliograph (NoRH) maps at 17 GHz, and often in association with coronal
holes. However, the origin of these polar brightening has not been established
yet. We propose that small magnetic loops are the source of these bright
patches, and present modeling results that reproduce the main observational
characteristics of the polar brightening within coronal holes at 17 GHz. The
simulations were carried out by calculating the radio emission of the small
loops, with several temperature and density profiles, within a 2D coronal hole
atmospheric model. If located at high latitudes, the size of the simulated
bright patches are much smaller than the beam size and they present the
instrument beam size when observed. The larger bright patches can be generated
by a great number of small magnetic loops unresolved by the NoRH beam. Loop
models that reproduce bright patches contain denser and hotter plasma near the
upper chromosphere and lower corona. On the other hand, loops with increased
plasma density and temperature only in the corona do not contribute to the
emission at 17 GHz. This could explain the absence of a one-to-one association
between the 17 GHz bright patches and those observed in extreme ultraviolet.
Moreover, the emission arising from small magnetic loops located close to the
limb may merge with the usual limb brightening profile, increasing its
brightness temperature and width.Comment: 8 pages, 6 figures, 1 table. Accepted for publication in The
Astrophysical Journa
- …
