2,022 research outputs found

    Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity.

    Get PDF
    Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions

    Ill-Behaved Convergence of a Model of the Gd3Ga5O12 Garnet Antiferromagnet with Truncated Magnetic Dipole-Dipole Interactions

    Full text link
    Previous studies have found that calculations which consider long-range magnetic dipolar interactions truncated at a finite cut-off distance Rc predict spurious (unphysical) long-range ordered phases for Ising and Heisenberg systems on the pyrochlore lattice. In this paper we show that, similar to these two cases, calculations that use truncated dipolar interactions to model the Gd3Ga5O12 garnet antiferromagnet also predict unphysical phases with incommensurate ordering wave vector q_ord that is very sensitive to the dipolar cut-off distance Rc.Comment: 7 pages, 2 color figures; Proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Is the Yb2Ti2O7 pyrochlore a quantum spin ice?

    Full text link
    We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.Comment: 8 pages (two-column), 9 figure

    Phase Transition and Thermal Order-by-Disorder in the Pyrochlore Quantum Antiferromagnet Er2Ti2O7: a High-Temperature Series Expansion Study

    Full text link
    Several rare earth magnetic pyrochlore materials are well modeled by a spin-1/2 quantum Hamiltonian with anisotropic exchange parameters Js. For the Er2Ti2O7 material, the Js were recently determined from high-field inelastic neutron scattering measurements. Here, we perform high-temperature (T) series expansions to compute the thermodynamic properties of this material using these Js. Comparison with experimental data show that the model describes the material very well including the finite temperature phase transition to an ordered phase at Tc~1.2 K. We show that high temperature expansions give identical results for different q=0 xy order parameter susceptibilities up to 8th order in \beta=1/T (presumably to all orders in \beta). Conversely, a non-linear susceptibility related to the 6th power of the order parameter reveals a thermal order-by-disorder selection of the same non-colinear \psi_2 state as found in Er2Ti2O7.Comment: 12 pages, 4 figure

    Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development.

    Get PDF
    Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin β3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4β7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4β7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4β7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin β TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development

    Magnetic anisotropy of the spin ice compound Dy2Ti2O7

    Get PDF
    We report magnetization and ac susceptibility of single crystals of the spin ice compound Dy2Ti2O7. Saturated moments at 1.8 K along the charasteristic axes [100] and [110] agree with the expected values for an effective ferromagnetic nearest-neighbor Ising pyrochlore with local anisotropy, where each magnetic moment is constrained to obey the `ice-rule'. At high enough magnetic fields along the [111] axis, the saturated moment exhibits a beaking of the ice-rule; it agrees with the value expected for a three-in one-out spin configuration. Assuming the realistic magnetic interaction between Dy ions given by the dipolar spin ice model, we completely reproduce the results at 2 K by Monte Carlo calculations. However, down to at least 60 mK, we have not found any experimental evidence of the long-range magnetic ordering predicted by this model to occur at around 180 mK. Instead, we confirm the spin freezing of the system below 0.5 K.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
    corecore