1,526 research outputs found
Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems
We discuss in this paper a new combination of methods for solving nonlinear boundary value problems containing a parameter. Methods of the continuation type are combined with least squares formulations, preconditioned conjugate gradient algorithms and finite element approximations.
We can compute branches of solutions with limit points, bifurcation points, etc.
Several numerical tests illustrate the possibilities of the methods discussed in the present paper; these include the Bratu problem in one and two dimensions, one-dimensional bifurcation and perturbed bifurcation problems, the driven cavity problem for the Navier–Stokes equations
A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions
A new computational method is presented to resolve hydrodynamic interactions
acting on solid particles immersed in incompressible host fluids. In this
method, boundaries between solid particles and host fluids are replaced with a
continuous interface by assuming a smoothed profile. This enabled us to
calculate hydrodynamic interactions both efficiently and accurately, without
neglecting many-body interactions. The validity of the method was tested by
calculating the drag force acting on a single cylindrical rod moving in an
incompressible Newtonian fluid. This method was then applied in order to
simulate sedimentation process of colloidal dispersions.Comment: 7pages, 7 figure
Four-field finite element solver and sensitivities for quasi-Newtonian flows
International audienceA computationally efficient finite element algorithm for power law fluid is elaborated in view of extensive direct and inverse simulations. We adopt a splitting technique to simplify the nonlinear structure of the fluids equations and derive a four-field saddle point formulation for which we prove the existence of a solution. The resolution of the corresponding variational inequalities is based on an augmented Lagrangian method and a mixed finite element discretization. The resulting iterative solver reveals to be fast and robust with low memory consumption. The time-saving provided by the algorithm compared to the standard algorithms of fixed point and Newton increases with the number of degrees of freedom and the nonlinearity of the problem. It is therefore well-suited for the solution of large problems with a great number of elements and for corresponding adjoint-based computations. Bidimensional numerical experiments are performed on two realistic situations of gravity flows: an experimental viscoplastic steady wave and a continental glacier. In the present study, results emphasize that for both cases, the modeling at bottom plays a strongly dominant role. Using surface velocitiy observations, the sensitivity analysis with respect to a spatially varying power-law exponent highlights the importance of an accurate knowledge of the rheology at high shear rate. The one on the basal sliding allows to detect the presence of a short wavelength (two times the thickness) free-slip area indetectable from surface velocities
Domain Embedding Methods for Incompressible Viscous Flow around Moving Rigid Bodies(Domain Decomposition Methods and Related Topics)
A new approach to hyperbolic inverse problems
We present a modification of the BC-method in the inverse hyperbolic
problems. The main novelty is the study of the restrictions of the solutions to
the characteristic surfaces instead of the fixed time hyperplanes. The main
result is that the time-dependent Dirichlet-to-Neumann operator prescribed on a
part of the boundary uniquely determines the coefficients of the self-adjoint
hyperbolic operator up to a diffeomorphism and a gauge transformation. In this
paper we prove the crucial local step. The global step of the proof will be
presented in the forthcoming paper.Comment: We corrected the proof of the main Lemma 2.1 by assuming that
potentials A(x),V(x) are real value
Phone-based interventions in adolescent psychiatry: A perspective and proof of concept pilot study with a focus on depression and autism
Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method
Previously, we have proposed a direct simulation scheme for colloidal
dispersions in a Newtonian solvent [Phys.Rev.E 71,036707 (2005)]. An improved
formulation called the ``Smoothed Profile (SP) method'' is presented here in
which simultaneous time-marching is used for the host fluid and colloids. The
SP method is a direct numerical simulation of particulate flows and provides a
coupling scheme between the continuum fluid dynamics and rigid-body dynamics
through utilization of a smoothed profile for the colloidal particles.
Moreover, the improved formulation includes an extension to incorporate
multi-component fluids, allowing systems such as charged colloids in
electrolyte solutions to be studied. The dynamics of the colloidal dispersions
are solved with the same computational cost as required for solving
non-particulate flows. Numerical results which assess the hydrodynamic
interactions of colloidal dispersions are presented to validate the SP method.
The SP method is not restricted to particular constitutive models of the host
fluids and can hence be applied to colloidal dispersions in complex fluids
Finite element approximation of some degenerate monotone quasilinear elliptic systems
Published versio
- …
