2,149 research outputs found
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs
Deep sequencing has enabled the investigation of a wide range of
environmental microbial ecosystems, but the high memory requirements for {\em
de novo} assembly of short-read shotgun sequencing data from these complex
populations are an increasingly large practical barrier. Here we introduce a
memory-efficient graph representation with which we can analyze the k-mer
connectivity of metagenomic samples. The graph representation is based on a
probabilistic data structure, a Bloom filter, that allows us to efficiently
store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We
show that this data structure accurately represents DNA assembly graphs in low
memory. We apply this data structure to the problem of partitioning assembly
graphs into components as a prelude to assembly, and show that this reduces the
overall memory requirements for {\em de novo} assembly of metagenomes. On one
soil metagenome assembly, this approach achieves a nearly 40-fold decrease in
the maximum memory requirements for assembly. This probabilistic graph
representation is a significant theoretical advance in storing assembly graphs
and also yields immediate leverage on metagenomic assembly
Using cascading Bloom filters to improve the memory usage for de Brujin graphs
De Brujin graphs are widely used in bioinformatics for processing
next-generation sequencing data. Due to a very large size of NGS datasets, it
is essential to represent de Bruijn graphs compactly, and several approaches to
this problem have been proposed recently. In this work, we show how to reduce
the memory required by the algorithm of [3] that represents de Brujin graphs
using Bloom filters. Our method requires 30% to 40% less memory with respect to
the method of [3], with insignificant impact to construction time. At the same
time, our experiments showed a better query time compared to [3]. This is, to
our knowledge, the best practical representation for de Bruijn graphs.Comment: 12 pages, submitte
Modern post-mortem imaging: an update on recent developments
Modern post-mortem investigations use an increasing number of digital imaging methods, which can be collected under the term “post-mortem imaging”. Most methods of forensic imaging are from the radiology field and are therefore techniques that show the interior of the body with technologies such as X-ray or magnetic resonance imaging. To digitally image the surface of the body, other techniques are regularly applied, e.g. three-dimensional (3D) surface scanning (3DSS) or photogrammetry. Today's most frequently used techniques include post-mortem computed tomography (PMCT), post-mortem magnetic resonance imaging (PMMR), post-mortem computed tomographic angiography (PMCTA) and 3DSS or photogrammetry. Each of these methods has specific advantages and limitations. Therefore, the indications for using each method are different. While PMCT gives a rapid overview of the interior of the body and depicts the skeletal system and radiopaque foreign bodies, PMMR allows investigation of soft tissues and parenchymal organs. PMCTA is the method of choice for viewing the vascular system and detecting sources of bleeding. However, none of those radiological methods allow a detailed digital view of the body's surface, which makes 3DSS the best choice for such a purpose. If 3D surface scanners are not available, photogrammetry is an alternative. This review article gives an overview of different imaging techniques and explains their applications, advantages and limitations. We hope it will improve understanding of the methods
Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA).
Developments in post-mortem imaging increasingly focus on addressing recognised diagnostic weaknesses, especially with regard to suspected natural deaths. Post-mortem MR angiography (PMMRA) may offer additional diagnostic information to help address such weaknesses, specifically in the context of sudden cardiac death. Complete filling of the coronary arteries and acceptable contrast with surrounding tissue are essential for a successful approach to PMMRA. In this work, the suitability of different liquids for inclusion in a targeted PMMRA protocol was evaluated. Factors influencing cooling of paraffinum liquidum + Angiofil® (6 %) in cadavers during routine multiphase post-mortem CT angiography were investigated. The temperature dependence of dynamic viscosity (8-20 °C), longitudinal (T1) and transverse (T2) relaxation (1-23 °C) of the proposed liquids was quadratically modelled. The relaxation behaviour of these liquids and MR scan parameters were further investigated by simulation of a radiofrequency (RF)-spoiled gradient echo (GRE) sequence to estimate potentially achievable contrast between liquids and post-mortem tissue at different temperatures across a forensically relevant temperature range. Analysis of the established models and simulations indicated that based on dynamic viscosity (27-33 mPa · s), short T1 relaxation times (155-207 ms) and a minimal temperature dependence over the investigated range of these parameters, paraffin oil and a solution of paraffin oil + Angiofil® (6 %) would be most suitable for post-mortem reperfusion and examination in MRI
Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes
This study was funded by the Sars Centre core budget to M. Adamska. Sequencing was performed at the Norwegian High Throughput Sequencing Centre funded by the Norwegian Research Council. O.M.R. and D.E.K.F. acknowledge support from the BBSRC and the School of Biology, University of St Andrews.Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors1,2,3,4, including homeobox genes belonging to the Antennapedia (ANTP) class5,6, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians5. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians5,7. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis)8. Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis8, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.PostprintPeer reviewe
Virtopsy: Zukunftsträchtige Forschung in der Rechtsmedizin
Computed tomography techniques have been developed over the last 10 years and have found various applications in the forensic field. The most recent development is multislice computed tomography combined with photogrammetry-based surface optical scanning and image rendering techniques. This combination of techniques can be used to produce 3-dimensional images of injury patterns for comparison with suspect weapons and also to screen for pathological conditions in the living or deceased. This technology provides a minimally invasive procedure for capturing forensically relevant images which can be produced in the courtroom. The rapid developments in imaging techniques could provide an alternative to conventional autopsy procedures in the futur
Vestibular Perception following Acute Unilateral Vestibular Lesions.
Little is known about the vestibulo-perceptual (VP) system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO) and VP function in 25 patients with vestibular neuritis (VN) acutely (2 days after onset) and after compensation (recovery phase, 10 weeks). Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2) and velocity steps of 90°/s (acceleration 180°/s(2)). We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of perceptual processes (ultimately cortical) participating in vestibular compensation, suppressing asymmetry acutely in unilateral vestibular lesions
Embodied perspective-taking indicated by selective disruption from aberrant self motion
Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
- …
