1,611 research outputs found

    Biomechanical indicators of key elements of sports equipment gymnastic exercises

    Get PDF
    The aim of this study is to analyze the biomechanical performance of the kinematic and dynamic structures of key elements of sports techniques of basic exercises performed gymnasts aged 12 - 14 years to the vaulting and on the bars of different heights, on the basis of the method of postural orientation movements. The study involved 11 gymnasts doing exercises on the vaulting and 9 gymnasts - on the boards of various heights. It is shown that the method of video - computer analysis of the type Yurchenko vault and dismount from the bars of varying heights, in conjunction with the method of postural orientation movements possible to isolate and identify the node elements. The indicators characterizing the node elements of sports equipment movements gymnasts in the phase structure of the vault and dismount from the bars of different heights have specific features and characteristics. Learned node elements sports equipment is the basis for the measurement, analysis and evaluation of the kinematic and dynamic structures and other types of exercises all-around gymnastics

    A causal statistical family of dissipative divergence type fluids

    Full text link
    In this paper we investigate some properties, including causality, of a particular class of relativistic dissipative fluid theories of divergence type. This set is defined as those theories coming from a statistical description of matter, in the sense that the three tensor fields appearing in the theory can be expressed as the three first momenta of a suitable distribution function. In this set of theories the causality condition for the resulting system of hyperbolic partial differential equations is very simple and allow to identify a subclass of manifestly causal theories, which are so for all states outside equilibrium for which the theory preserves this statistical interpretation condition. This subclass includes the usual equilibrium distributions, namely Boltzmann, Bose or Fermi distributions, according to the statistics used, suitably generalized outside equilibrium. Therefore this gives a simple proof that they are causal in a neighborhood of equilibrium. We also find a bigger set of dissipative divergence type theories which are only pseudo-statistical, in the sense that the third rank tensor of the fluid theory has the symmetry and trace properties of a third momentum of an statistical distribution, but the energy-momentum tensor, while having the form of a second momentum distribution, it is so for a different distribution function. This set also contains a subclass (including the one already mentioned) of manifestly causal theories.Comment: LaTex, documentstyle{article

    Explicit coercivity estimates for the linearized Boltzmann and Landau operators

    Full text link
    We prove explicit coercivity estimates for the linearized Boltzmann and Landau operators, for a general class of interactions including any inverse-power law interactions, and hard spheres. The functional spaces of these coercivity estimates depend on the collision kernel of these operators. They cover the spectral gap estimates for the linearized Boltzmann operator with Maxwell molecules, improve these estimates for hard potentials, and are the first explicit coercivity estimates for soft potentials (including in particular the case of Coulombian interactions). We also prove a regularity property for the linearized Boltzmann operator with non locally integrable collision kernels, and we deduce from it a new proof of the compactness of its resolvent for hard potentials without angular cutoff.Comment: 32 page

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach

    Full text link
    We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity and temperature profiles are obtained as a function of the mixture mass ratio \mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower and cooler than light particles in the strong nonequilibrium region around the shock. The shock width w(\mu), which characterizes the size of this region, decreases as w(\mu) ~ \mu^{1/3} for \mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium, \phi(x) ~ exp[-x/\lambda]. The scale separation is also apparent here, with two typical scales, \lambda_1 and \lambda_2, such that \lambda_1 ~ \mu^{1/2} as \mu-->0$, while \lambda_2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed at the light of recent numerical studies on the nonequilibrium behavior of similar 1d binary fluids.Comment: 9 pages, 8 figs, published versio

    Entropic force, noncommutative gravity and ungravity

    Full text link
    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.Comment: 8 pages, final version published on Physical Review

    Incorporating Forcing Terms in Cascaded Lattice-Boltzmann Approach by Method of Central Moments

    Full text link
    Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to improve numerical stability. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.Comment: 55 pages, 4 figure

    Composition profiles of InAs–GaAs quantum dots determined by medium-energy ion scattering

    Get PDF
    The composition profile along the [001] growth direction of low-growth-rate InAs–GaAs quantum dots (QDs) has been determined using medium-energy ion scattering (MEIS). A linear profile of In concentration from 100% In at the top of the QDs to 20% at their base provides the best fit to MEIS energy spectra

    Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting.

    Get PDF
    The goal of the Sexually Transmitted Infection Clinical Trial Group's Antimicrobial Resistance (AMR) in Neisseria gonorrhoeae (NG) meeting was to assemble experts from academia, government, nonprofit and industry to discuss the current state of research, gaps and challenges in research and technology and priorities and new directions to address the continued emergence of multidrug-resistant NG infections. Topics discussed at the meeting, which will be the focus of this article, include AMR NG global surveillance initiatives, the use of whole genome sequencing and bioinformatics to understand mutations associated with AMR, mechanisms of AMR, and novel antibiotics, vaccines and other methods to treat AMR NG. Key points highlighted during the meeting include: (i) US and International surveillance programs to understand AMR in NG; (ii) the US National Strategy for combating antimicrobial-resistant bacteria; (iii) surveillance needs, challenges, and novel technologies; (iv) plasmid-mediated and chromosomally mediated mechanisms of AMR in NG; (v) novel therapeutic (eg, sialic acid analogs, factor H [FH]/Fc fusion molecule, monoclonal antibodies, topoisomerase inhibitors, fluoroketolides, LpxC inhibitors) and preventative (eg, peptide mimic) strategies to combat infection. The way forward will require renewed political will, new funding initiatives, and collaborations across academic and commercial research and public health programs
    corecore