12,731 research outputs found
Supersymmetric Homogeneous Quantum Cosmologies Coupled to a Scalar Field
Recent work on supersymmetric Bianchi type IX cosmologies coupled to a
scalar field is extended to a general treatment of homogeneous quantum
cosmologies with explicitely solvable momentum constraints, i.e. Bianchi types
I, II, VII, VIII besides the Bianchi type IX, and special cases, namely the
Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space. Besides the
earlier explicit solution of the Wheeler DeWitt equation for Bianchi type IX,
describing a virtual wormhole fluctuation, an additional explicit solution is
given and identified with the `no-boundary state'.Comment: 23 PAGE
Cellular structure of -Brauer algebras
In this paper we consider the -Brauer algebra over a commutative
noetherian domain. We first construct a new basis for -Brauer algebras, and
we then prove that it is a cell basis, and thus these algebras are cellular in
the sense of Graham and Lehrer. In particular, they are shown to be an iterated
inflation of Hecke algebras of type Moreover, when is a field of
arbitrary characteristic, we determine for which parameters the -Brauer
algebras are quasi-heredity. So the general theory of cellular algebras and
quasi-hereditary algebras applies to -Brauer algebras. As a consequence, we
can determine all irreducible representations of -Brauer algebras by linear
algebra methods
J D Bernal: philosophy, politics and the science of science
This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position
Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation
The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest. There was a main effect of time (P < 0.01) for plasma interleukin-1 (IL-1) and interleukin-6 (IL-6) concentrations and a strong trend (P = 0.067) for plasma interleukin-1 receptor antagonist concentration during MSVV. Plasma IL-6 concentration was reduced after IMT by 27 + 18% (main effect of intervention, P = 0.029), whereas there was no change after PLA (P = 0.753). There was no increase in a systemic marker of oxidative stress [DNA damage in peripheral blood mononuclear cells (PBMC)], and diaphragm fatigue was not related to the increases in plasma IL-1 and IL-6 concentrations. A dose-response relationship was observed between respiratory muscle work and minute ventilation and increases in plasma IL-6 concentration. In conclusion, increases in plasma IL-1 and IL-6 concentrations during MSVV were not due to diaphragm fatigue or DNA damage in PBMC. Increases in plasma IL-6 concentration during MSVV are attenuated following IMT, and the plasma IL-6 response is dependent upon the level of respiratory muscle work and minute ventilation
J D Bernal: philosophy, politics and the science of science
This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position
The effect of bars on the M*- e relation: offset, scatter and residuals correlations
We analyse a set of collisionless disc galaxy simulations to study the consequences of bar formation and evolution on the M•-σe relation of supermassive black holes (SMBHs). The redistribution of angular momentum driven by bars leads to a mass increase within the central region, raising the velocity dispersion of the bulge, σe, on average by ˜12 per cent and as much as ˜20 per cent. If a disc galaxy with an SMBH satisfying the M•-σe relation forms a bar, and the SMBH does not grow in the process, then the increase in σe moves the galaxy off the M•-σe relation. We explore various effects that can affect this result including contamination from the disc and anisotropy. The displacement from the M•-σe relation for individual model barred galaxies correlates with both the bulge-to-total stellar mass ratio, M(B)/M(B + D), and the 2D anisotropy, βφ(B + D), both measured within the effective radius of the bulge. Overall, this process leads to an M•-σe for barred galaxies offset from that of unbarred galaxies, as well as an increase in its scatter. We assemble samples of observed unbarred and barred galaxies with classical bulges and find tentative hints of an offset between the two consistent with the predicted. Including all barred galaxies, rather than just those with a classical bulge, leads to a significantly larger offset, which is mostly driven by the significantly larger offset of pseudo bulge
Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information
KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe
Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis.
Women with osteoporosis treated for 36 months with twice-yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One-third of the increase came from increasing cortical density, and two-thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in denosumab-treated women at increased risk of fracture.This study was funded by Amgen Inc., Thousand Oaks, CA, USA. Cambridge Bone Group is supported by Arthritis Research UK, The Evelyn Trust, and Cambridge NIHR Biomedical Research Centre.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jbmr.232
Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity
From the beginning of the subject, calculations of quantum vacuum energies or
Casimir energies have been plagued with two types of divergences: The total
energy, which may be thought of as some sort of regularization of the
zero-point energy, , seems manifestly divergent. And
local energy densities, obtained from the vacuum expectation value of the
energy-momentum tensor, , typically diverge near
boundaries. The energy of interaction between distinct rigid bodies of whatever
type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The self-energy of a body is
less well-defined, and suffers divergences which may or may not be removable.
Some examples where a unique total self-stress may be evaluated include the
perfectly conducting spherical shell first considered by Boyer, a perfectly
conducting cylindrical shell, and dilute dielectric balls and cylinders. In
these cases the finite part is unique, yet there are divergent contributions
which may be subsumed in some sort of renormalization of physical parameters.
The divergences that occur in the local energy-momentum tensor near surfaces
are distinct from the divergences in the total energy, which are often
associated with energy located exactly on the surfaces. However, the local
energy-momentum tensor couples to gravity, so what is the significance of
infinite quantities here? For the classic situation of parallel plates there
are indications that the divergences in the local energy density are consistent
with divergences in Einstein's equations; correspondingly, it has been shown
that divergences in the total Casimir energy serve to precisely renormalize the
masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics
volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David
Roberts, and Felipe da Ros
The Progenitors of Type Ia Supernovae: II. Are they Double-Degenerate Binaries? The Symbiotic Channel
In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M_C, and
explode as a Type Ia supernova (SNIa), it must interact with another star,
either accreting matter from or merging with it. The failure to identify the
types of binaries which produce SNeIa is the "progenitor problem". Its solution
is required if we are to utilize the full potential of SNeIa to elucidate basic
cosmological and physical principles. In single-degenerate models, a WD
accretes and burns matter at high rates. Nuclear-burning WDs (NBWDs) with mass
close to M_C are hot and luminous, potentially detectable as supersoft x-ray
sources (SSSs). In previous work we showed that > 90-99% of the required number
of progenitors do not appear as SSSs during most of the crucial phase of mass
increase. The obvious implication is that double-degenerate (DD) binaries form
the main class of progenitors. We show in this paper, however, that many
binaries that later become DDs must pass through a long-lived NBWD phase during
which they are potentially detectable as SSSs. The paucity of SSSs is therefore
not a strong argument in favor of DD models. Those NBWDs that are the
progenitors of DD binaries are likely to appear as symbiotic binaries for
intervals > 10^6 years. In fact, symbiotic pre-DDs should be common, whether or
not the WDs eventually produce SNeIa. The key to solving the progenitor problem
lies in understanding the appearance of NBWDs. Most do not appear as SSSs most
of the time. We therefore consider the evolution of NBWDs to address the
question of what their appearance may be and how we can hope to detect them.Comment: 24 pages; 5 figures; submitted to Ap
- …
