408 research outputs found
Compatibility testing of candidate protective barrier coatings and performance testing of filter vent materials Final report
Flame sprayed ceramic aluminum and zinc coatings for corrosion prevention of tantalum containment vessel in nuclear reacto
Co-ordination of boron in sillimanite
Ion-Microprobe analyses of six sillimanites
associated with kornerupine show that the sillimanite
can incorporate from 0.035 to 0.43 wt. %
B_2O_3 (Grew and Hinthorne, 1983). Boron appears
to substitute for silicon concomitantly with Mg
substitution for Al such that the atomic Mg/B ratio
is close to 0.5. This substitution results in a
deficiency of cationic charge, which Grew and
Hinthorne (1983) attributed to a submicroscopic
rearrangement of the sillimanite structure involving
loss of oxygen. A possible substitution scheme is
2(B + xMg) → 2(Si + xAl) + (1 + x)O, where x ≃ 0.5.
In the present study, we have addressed the question
of co-ordination of boron in sillimanite. As
boron can occur in trigonal or tetrahedral coordination
with oxygen, there is no compelling
reason that B substitution for Si implies tetrahedral
co-ordination for B
A region of influence approach to predicting flow duration curves within ungauged catchments
International audienceThe development of regionalised hydrological models or procedures for estimating flow duration statistics has been the subject of international research since the 1970s. Historically these models have been based on multivariate statistical models that relate flow statistics to the physical and climatic characteristics of a catchment. The a priori classification of catchments has often been a component of this analysis. This paper discusses the background to the development of such models, with particular emphasis on the United Kingdom; it describes a new region of influence approach to estimating flow duration statistics and compares the performance of this method with current multivariate regression based methods for estimating flow duration statistics within the United Kingdom. Keywords: hydrological models, regionalisation, river networks, water resources, flow duration curves, region of influence</p
A new approach to estimating Mean Flow in the UK
Traditionally, the estimation of Mean Flow (MF) in ungauged catchments has been approached using conceptual water balance models or empirical formulae relating climatic inputs to stream flow. In the UK, these types of models have difficulty in predicting MF in low rainfall areas because the conceptualisation of soil moisture behaviour and its relationship with evaporation rates used is rather simplistic. However, it is in these dry regions where the accurate estimation of flows is most critical to effective management of a scarce resource. A novel approach to estimating MF, specifically designed to improve estimation of runoff in dry catchments, has been developed using a regionalisation of the Penman drying curve theory. The dynamic water balance style Daily Soil Moisture Accounting (DSMA) model operates at a daily time step, using inputs of precipitation and potential evaporation and simulates the development of soil moisture deficits explicitly. The model has been calibrated using measured MFs from a large data set of catchments in the United Kingdom. The performance of the DSMA model is superior to existing established steady state and dynamic water-balance models over the entire data set considered and the largest improvement is observed in very low rainfall catchments. It is concluded that the performance of all models in high rainfall areas is likely to be limited by the spatial representation of rainfall.</p> <p style='line-height: 20px;'><b>Keywords: </b>hydrological models, regionalisation, water resources, mean flow, runoff, water balance, Penman drying curve, soil moisture model</p
Preliminary data for the 20 May 1974, simultaneous evaluation of remote sensors experiment
Several remote sensors were simultaneously used to collect data over the tidal James River from Hopewell to Norfolk, Virginia. Sensors evaluated included the Multichannel-Ocean Color Sensor, multispectral scanners, and multispectral photography. Ground truth measurements and remotely sensed data are given. Preliminary analysis indicates that suspended sediment and concentrated industrial effluent are observable from all sensors
The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups
Although the distinction between magnesiodumortieite and dumortierite, i.e. Mg vs. Al dominance at the partially vacant octahedral Al1 site, had met current criteria of the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) for distinguishing mineral species, the distinction between holtite and dumortierite had not, since Al and Si are dominant over Ta and (Sb, As) at the Al1 and two Si sites, respectively, in both minerals. Recent studies have revealed extensive solid solution between Al, Ti, Ta and Nb at Al1 and between Si, As and Sb at the two Si sites or nearly coincident (As, Sb) sites in dumortierite and holtite, further blurring the distinction between the two minerals.
This situation necessitated revision in the nomenclature of the dumortierite group. The newly constituted dumortierite supergroup, space group Pnma (no. 62), comprises two groups and six minerals, one of which is the first member of a potential third group, all isostructural with dumortierite. The supergroup, which has been approved by the CNMNC, is based on more specific end-member compositions for dumortierite and holtite, in which occupancy of the Al1 site is critical.
(1) Dumortierite group, with Al1 = Al^(3+), Mg^(2+) and 〈, where 〈 denotes cation vacancy. Charge balance is provided by OH substitution for O at the O2, O7 and O10 sites. In addition to dumortierite, endmember composition AlAl_6Bsi_3O_(18), and magnesiodumortierite, endmember composition MgAl_6Bsi_3O_(17)(OH), plus three endmembers, “hydroxydumortierite”, 〈Al_6Bsi_3O_(15)(OH)_3 and two Mg-Ti analogues of dumortierite, (Mg_(0.5)Ti_(0.5))Al_6Bsi_3O_(18) and (Mg_(0.5)Ti_(0.5))Mg_2Al_4Bsi_3O_(16)(OH)_2, none of which correspond to mineral species. Three more hypothetical endmembers are derived by homovalent substitutions of Fe^(3+) for Al and Fe^(2+) for Mg.
(2) Holtite group, with Al1 = Ta^(5+), Nb^(5+), Ti^(4+) and 〈. In contrast to the dumortierite group, vacancies serve not only to balance the extra charge introduced by the incorporation of pentavalent and quadrivalent cations for trivalent cations at Al1, but also to reduce repulsion between the highly charged cations. This group includes holtite, endmember composition (Ta_(0.6)〈_(0.4))Al_6Bsi_3O_(18), nioboholite (2012-68), endmember composition (Nb_(0.6)〈_(0.4_)Al_6Bsi_3O_(18), and titanoholtite (2012-69), endmember composition (Ti_(0.75)〈_(0.25))Al_6Bsi_3O_(18).
(3) Szklaryite (2012-70) with Al1 = 〈 and an endmember formula 〈Al_6Bas^(3+)_ 3O_(15). Vacancies at Al1 are caused by loss of O at O2 and O7, which coordinate the Al1 with the Si sites, due to replacement of Si^(4+) by As^(3+) and Sb^(3+), and thus this mineral does not belong in either the dumortierite or the holtite group. Although szklaryite is distinguished by the mechanism introducing vacancies at the Al1 site, the primary criterion for identifying it is based on occupancy of the Si/As, Sb sites: (As^(3+) + Sb^(3+)) > Si^(4+) consistent with the dominant-valency rule. A Sb^(3+) analogue to szklaryite is possible
The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland: Nioboholtite, (Nb_(0.6)〈_(0.4))Al_6Bsi_3O_(18), titanoholtite, (Ti_(0.75)〈_(0.25))Al_6Bsi_3O_(18), and szklaryite 〈Al_6Bas^(3+)_ 3O_(15)
Three new minerals in the dumortierite supergroup were discovered in the Szklary pegmatite, Lower Silesia, Poland. Nioboholtite, endmember (Nb_(0.6)〈_(0.4))Al_6B_3Si_3O_(18), and titanoholtite, endmember (Ti_(0.75)〈_(0.25))Al_6B_3Si_3O_(18), are new members of the holtite group, whereas szklaryite, endmember 〈Al_6Bas^(3+)_ 3O_(15), is the first representative of a potential new group. Nioboholtite occurs mostly as overgrowths not exceeding 10 μm in thickness on cores of holtite. Titanoholtite forms patches up to 10 μm across in the holtite cores and streaks up to 5 μm wide along boundaries between holtite cores and the nioboholtite rims. Szklaryite is found as a patch ∼2 μm in size in As- and Sb- bearing dumortierite enclosed in quartz. Titanoholtite crystallized almost simultaneously with holtite and other Ta-dominant minerals such as tantalite-(Mn) and stibiotantalite and before nioboholtite, which crystallized simultaneously with stibiocolumbite during decreasing Ta activity in the pegmatite melt. Szklaryite crystallized after nioboholtite during the final stage of the Szklary pegmatite formation. Optical properties could be obtained only from nioboholtite, which is creamy-white to brownish yellow or grey-yellow in hand specimen, translucent, with a white streak, biaxial (–), n_α = 1.740 – 1.747, n_β ∼ 1.76, n_γ ∼ 1.76, and Δ < 0.020. Electron microprobe analyses of nioboholtite, titanoholtite and szklaryite give, respectively, in wt.%: P_2O_5 0.26, 0.01, 0.68; Nb_2O_55.21, 0.67, 0.17; Ta_2O_5 0.66, 1.18, 0.00; SiO_2 18.68, 21.92, 12.78; TiO_2 0.11, 4.00, 0.30; B_2O_3 4.91, 4.64, 5.44; Al_2O_3 49.74, 50.02, 50.74; As_2O_3 5.92, 2.26, 16.02; Sb_2O_3 10.81, 11.48, 10.31; FeO 0.51, 0.13, 0.19; H_2O (calc.) 0.05, –, –, Sum 96.86, 96.34, 97.07, corresponding on the basis of O = 18–As–Sb to {(Nb_(0.26)Ta_(0.02)〈_(0.18)) (Al_(0.27)Fe_(0.05)Ti_(0.01))〈_(0.21)}_(Σ1.00)Al_6B_(0.92){Si_(2.03)P_(0.02)(Sb_(0.48)As_(0.39)Al_(0.07)}_(Σ3.00)(O_(17.09)OH_(0.04)〈_(0.87))_(Σ18.00), {(Ti_(0.32) Nb_(0.03)Ta_(0.03)〈_(0.10) )(Al_(0.3 5) Ti_(0.01) Fe_(0.01))〈_(0.15)}_(Σ1.00) Al_6 B_(0.86) {Si_(2.36) (Sb_(0.51) As_(0.14) )}_(Σ3.01)(O_(17.35)〈_(0.65))_(Σ18.00) and {〈_(0.53) (Al_(0.41) Ti_(0.02) Fe_(0.02))(Nb_(0.01)〈_(0.01) )}_(Σ1.00)Al_6 B_(1.01) {(As_(1.07) Sb_(0.47) Al_(0.03)) Si_(1.37) P_(0.06)}_(Σ3.00)(O_(16.46)〈_(1.54))_(Σ18.00). Electron backscattered diffraction indicates that the three minerals are presumably isostructural with dumortierite, that is, orthorhombic symmetry, space group Pnma (no. 62), and unit-cell parameters close to a = 4.7001, b = 11.828, c = 20.243 Å, with V = 1125.36 Å^3 and Z = 4; micro-Raman spectroscopy provided further confirmation of the structural relationship for nioboholtite and titanoholtite. The calculated density is 3.72 g/cm^3 for nioboholtite, 3.66 g/cm^3 for titanoholtite and 3.71 g/cm^3 for szklaryite. The strongest lines in X-ray powder diffraction patterns calculated from the cell parameters of dumortierite of Moore and Araki (1978) and the empirical formulae of nioboholtite, titanoholtite and szklaryite are [d, Å, I (hkl)]: 10.2125, 67, 46, 19 (011); 5.9140, 40, 47, 57 (020); 5.8610, 66, 78, 100 (013); 3.4582, 63, 63, 60 (122); 3.4439, 36, 36, 34 (104); 3.2305, 100, 100, 95 (123); 3.0675, 53, 53, 50 (105); 2.9305, 65, 59, 51 (026); 2.8945, 64, 65, 59 (132), respectively. The three minerals have been approved by the IMA CNMNC (IMA 2012-068, 069, 070) and were named for their relationship to holtite and occurrence in the Szklary pegmatite, respectively
Recommended from our members
Needs and opportunities in mineral evolution research
Progress in understanding mineral evolution, Earth’s changing near-surface mineralogy through time, depends on the availability of detailed information on mineral localities of known ages and geologic settings. A comprehensive database including this information, employing the mindat.org web site as a platform, is now being implemented. This resource will incorporate software to correlate a range of mineral occurrences and properties vs. time, and it will thus facilitate studies of the chang- ing diversity, distribution, associations, and characteristics of individual minerals as well as mineral groups. The Mineral Evolution Database thus holds the prospect of revealing mineralogical records of important geophysical, geochemical, and biological events in Earth history.Organismic and Evolutionary Biolog
Energetic outer radiation belt electron precipitation during recurrent solar activity
Transmissions from three U.S. VLF (very low frequency) transmitters were received at Churchill, Canada, during an event study in May to November, 2007. This period spans four cycles of recurrent geomagnetic activity spaced similar to 27 days apart, with daily Sigma Kp reaching similar to 30 at the peaks of the disturbances. The difference in the amplitude of the signals received during the day and during the night varied systematically with geomagnetic activity, and was used here as a proxy for ionization changes caused by energetic electron precipitation. For the most intense of the recurrent geomagnetic storms there was evidence of electron precipitation from 3 300 keV and similar to 1 MeV trapped electrons, and also consistent with the daily average ULF (ultralow frequency) Pc1-2 power (L = 3.9) from Lucky Lake, Canada, which was elevated during the similar to 1 MeV electron precipitation period. This suggests that Pc1-2 waves may play a role in outer radiation belt loss processes during this interval. We show that the > 300 keV trapped electron flux from POES is a reasonable proxy for electron precipitation during recurrent high-speed solar wind streams, although it did not describe all of the variability that occurred. While energetic electron precipitation can be described through a proxy such as Kp or Dst, careful incorporation of time delays for different electron energies must be included. Dst was found to be the most accurate proxy for electron precipitation during the weak recurrent-activity period studied
In situ detection of boron by ChemCam on Mars
We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater
- …
