2,207 research outputs found
Negative and Nonlinear Response in an Exactly Solved Dynamical Model of Particle Transport
We consider a simple model of particle transport on the line defined by a
dynamical map F satisfying F(x+1) = 1 + F(x) for all x in R and F(x) = ax + b
for |x| < 0.5. Its two parameters a (`slope') and b (`bias') are respectively
symmetric and antisymmetric under reflection x -> R(x) = -x. Restricting
ourselves to the chaotic regime |a| > 1 and therein mainly to the part a>1 we
study not only the `diffusion coefficient' D(a,b), but also the `current'
J(a,b). An important tool for such a study are the exact expressions for J and
D as obtained recently by one of the authors. These expressions allow for a
quite efficient numerical implementation, which is important, because the
functions encountered typically have a fractal character. The main results are
presented in several plots of these functions J(a,b) and D(a,b) and in an
over-all `chart' displaying, in the parameter plane, all possibly relevant
information on the system including, e.g., the dynamical phase diagram as well
as invariants such as the values of topological invariants (kneading numbers)
which, according to the formulas, determine the singularity structure of J and
D. Our most significant findings are: 1) `Nonlinear Response': The parameter
dependence of these transport properties is, throughout the `ergodic' part of
the parameter plane (i.e. outside the infinitely many Arnol'd tongues)
fractally nonlinear. 2) `Negative Response': Inside certain regions with an
apparently fractal boundary the current J and the bias b have opposite signs.Comment: corrected typos and minor reformulations; 28 pages (revtex) with 7
figures (postscript); accepted for publication in JS
A review of the literature on pickling inhibitors and cadmium electroplating processes to minimize hydrogen absorption by ultrahigh-strength steels
Literature review on pickling inhibitors and cadmium electroplating processes to minimize hydrogen absorption by ultrahigh strength steel
A review of the literature on cleaning, pickling, and electroplating processes and relief treatments to minimize hydrogen embrittlement of ultrahigh-strength steels Special report
Cleaning, pickling, and electroplating processes to minimize hydrogen embrittlement of ultrahigh strength steel
A study of hydrogen embrittlement of various alloys Annual summary report, 24 Jun. 1965 - 23 Jun. 1966
Hydrogen embrittlement of alloy cathodically charged and notched tensile metal
Literature review on pickling inhibitors and cadmium electroplating processes
Because introduction of hydrogen during bright-cadmium electroplating of high strength steels causes hydrogen-stress cracking, a program was undertaken to evaluate various processes and materials. Report describes effectiveness of inhibitors for reducing hydrogen absorption by steels
Review of literature on hydrogen embrittlement
Hydrogen embrittlement in high strength iron-base and nickel-base alloys and titaniu
The doubly inelastic contribution to electron loss: H0 and He0 (0,5 MeV u-1) in collision with Ar
Nonequilibrium Electron Interactions in Metal Films
Ultrafast relaxation dynamics of an athermal electron distribution is
investigated in silver films using a femtosecond pump-probe technique with 18
fs pulses in off-resonant conditions. The results yield evidence for an
increase with time of the electron-gas energy loss rate to the lattice and of
the free electron damping during the early stages of the electron-gas
thermalization. These effects are attributed to transient alterations of the
electron average scattering processes due to the athermal nature of the
electron gas, in agreement with numerical simulations
Global end-diastolic volume increases to maintain fluid responsiveness in sepsis-induced systolic dysfunction
Background: Sepsis-induced cardiac dysfunction may limit fluid responsiveness and the mechanism thereof remains unclear. Since cardiac function may affect the relative value of cardiac filling pressures, such as the recommended central venous pressure (CVP), versus filling volumes in guiding fluid loading, we studied these parameters as determinants of fluid responsiveness, according to cardiac function.Methods: A delta CVP-guided, 90 min colloid fluid loading protocol was performed in 16 mechanically ventilated patients with sepsis-induced hypotension and three 30 min consecutive fluid loading steps of about 450 mL per patient were evaluated. Global end-diastolic volume index (GEDVI), cardiac index (CI) and global ejection fraction (GEF) were assessed from transpulmonary dilution. Baseline and changes in CVP and GEDVI were compared among responding (CI increase ≥10% and ≥15%) and non-responding fluid loading steps, in patient with low (<20%, n = 9) and near-normal (≥20%) GEF (n = 7) at baseline.Results: A low GEF was in line with other indices of impaired cardiac (left ventricular) function, prior to and after fluid loading. Of 48 fluid loading steps, 9 (of 27) were responding when GEF <20% and 6 (of 21) when GEF ≥20. Prior to fluid loading, CVP did not differ between responding and non-responding steps and levels attained were 23 higher in the latter, regardless of GEF (P = 0.004). Prior to fluid loading, GEDVI (and CI) was higher in responding (1007 ± 306 mL/m2) than non-responding steps (870 ± 236 mL/m2) when GEF was low (P = 0.002), but did not differ when GEF was near-normal. Increases in GEDVI were associated with increases in CI and fluid responsiveness, regardless of GEF (P < 0.001).Conclusions: As estimated from transpulmonary dilution, about half of patients with sepsis-induced hypotension have systolic cardiac dysfunction. During dysfunction, cardiac dilation with a relatively high baseline GEDVI maintains fluid responsiveness by further dilatation (increase in GEDVI rather than of CVP) as in patients without dysfunction. Absence of fluid responsiveness during systolic cardiac dysfunction may be caused by diastolic dysfunction and/or right ventricular dysfunction
- …
