3,894 research outputs found
A waiting time phenomenon for thin film equations
We prove the occurrence of a waiting time phenomenon for solutions to fourth order degenerate parabolic differential equations which model the evolution of thin films of viscous fluids. In space dimension less or equal to three, we identify a general criterion on the growth of initial data near the free boundary which guarantees that for sufficiently small times the support of strong solutions locally does not increase. It turns out that this condition only depends on the smoothness of the diffusion coefficient in its point of degeneracy. Our approach combines a new version of Stampacchia's iteration lemma with weighted energy or entropy estimates. On account of numerical experiments, we conjecture that the
aforementioned growth criterion is optimal
Cosmic variance of the galaxy cluster weak lensing signal
Intrinsic variations of the projected density profiles of clusters of
galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We
present a semi-analytical model to account for this effect, based on a
combination of variations in halo concentration, ellipticity and orientation,
and the presence of correlated haloes. We calibrate the parameters of our model
at the 10 per cent level to match the empirical cosmic variance of cluster
profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological
simulation. We show that weak lensing measurements of clusters significantly
underestimate mass uncertainties if intrinsic profile variations are ignored,
and that our model can be used to provide correct mass likelihoods. Effects on
the achievable accuracy of weak lensing cluster mass measurements are
particularly strong for the most massive clusters and deep observations (with
~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol
and z=0.25), but significant also under typical ground-based conditions. We
show that neglecting intrinsic profile variations leads to biases in the
mass-observable relation constrained with weak lensing, both for intrinsic
scatter and overall scale (the latter at the 15 per cent level). These biases
are in excess of the statistical errors of upcoming surveys and can be avoided
if the cosmic variance of cluster profiles is accounted for.Comment: 14 pages, 6 figures; submitted to MNRA
Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms
The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed
Not all surveillance data are created equal—A multi‐method dynamic occupancy approach to determine rabies elimination from wildlife
1. A necessary component of elimination programmes for wildlife disease is effective surveillance. The ability to distinguish between disease freedom and non‐detection can mean the difference between a successful elimination campaign and new epizootics. Understanding the contribution of different surveillance methods helps to optimize and better allocate effort and develop more effective surveillance programmes.
2. We evaluated the probability of rabies virus elimination (disease freedom) in an enzootic area with active management using dynamic occupancy modelling of 10 years of raccoon rabies virus (RABV) surveillance data (2006–2015) collected from three states in the eastern United States. We estimated detection probability of RABV cases for each surveillance method (e.g. strange acting reports, roadkill, surveillance‐trapped animals, nuisance animals and public health samples) used by the USDA National Rabies Management Program.
3. Strange acting, found dead and public health animals were the most likely to detect RABV when it was present, and generally detectability was higher in fall– winter compared to spring–summer. Found dead animals in fall–winter had the highest detection at 0.33 (95% CI: 0.20, 0.48). Nuisance animals had the lowest detection probabilities (~0.02).
4. Areas with oral rabies vaccination (ORV) management had reduced occurrence probability compared to enzootic areas without ORV management. RABV occurrence was positively associated with deciduous and mixed forests and medium to high developed areas, which are also areas with higher raccoon (Procyon lotor) densities. By combining occupancy and detection estimates we can create a probability of elimination surface that can be updated seasonally to provide guidance on areas managed for wildlife disease.
5. Synthesis and applications. Wildlife disease surveillance is often comprised of a combination of targeted and convenience‐based methods. Using a multi‐method analytical approach allows us to compare the relative strengths of these methods, providing guidance on resource allocation for surveillance actions. Applying this multi‐method approach in conjunction with dynamic occupancy analyses better informs management decisions by understanding ecological drivers of disease occurrence
Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses
In the present study, the effects of a fibrous membrane between cement and bone in a femoral total hip replacement were investigated. The study involved the problem of modeling this fibrous membrane in finite-element analyses, and its global consequences for the load-transfer mechanism and its resulting stress patterns. A finite-element model was developed, suitable to describe nonlinear contact conditions in combination with nonlinear material properties of the fibrous membrane. The fibrous tissue layer was described as a highly compliant material with little resistance against tension and shear. The analysis showed that the load transfer mechanism from stem to bone changes drastically when such a membrane is present. These effects are predominantly caused by tensile loosening and slip at the interface, and are enhanced by the nonlinear membrane characteristics.\ud
\ud
Using parametric analysis, it was shown that these effects on the load-transfer mechanism cannot be described satisfactorily with linear elastic models.\ud
\ud
Most importantly, the fibrous tissue interposition causes excessive stress concentrations in bone and cement, and relatively high relative displacements between these materials
Quantitative analysis of bone reactions to relative motions at implant-bone interfaces
Connective soft tissues at the interface between implants and bone, such as in human joint replacements, can endanger the stability of the implant fixation. The potential of an implant to generate interface bone resorption and form soft tissue depends on many variables, including mechanical ones. These mechanical factors can be expressed in terms of relative motions between bone and implant at the interface or deformation of the interfacial material.\ud
\ud
The purpose of this investigation was to determine if interface debonding and subsequent relative interface motions can be responsible for interface degradation and soft tissue interposition as seen in experiments and clinical results. A finite element computer program was augmented with a mathematical description of interface debonding, dependent on interface stress criteria, and soft tissue interface interposition, dependent on relative interface motions. Three simplified models of orthopaedic implants were constructed: a cortical bone screw for fracture fixation plates, a femoral resurfacing prosthesis and a straight stem model, cemented in a bone. The predicted computer configurations were compared with clinical observations. The computer results showed how interface disruption and fibrous tissue interposition interrelate and possibly enhance each other, whereby a progressive development of the soft tissue layer can occur.\ud
\ud
Around the cortical bone screw, the predicted resorption patterns were relatively large directly under the screw head and showed a pivot point in the opposite cortex. The resurfacing cup model predicted some fibrous tissue formation under the medial and lateral cup rim, whereby the medial layer developed first because of higher initial interface stresses. The straight stem model predicted initial interface failure at the proximal parts. After proximal resorption and fibrous tissue interposition, the medial interface was completely disrupted and developed an interface layer. The distal and mid lateral side maintained within the strength criterion.\ud
\ud
Although the applied models were relatively simple, the results showed reasonable qualitative agreement with resorption patterns found in clinical studies concerning bone screws and the resurfacing cup. The hypothesis that interface debonding and subsequent relative (micro)motions could be responsible for bone resorption and fibrous tissue propagation is thereby sustained by the results
Calculation of the Phase Behavior of Lipids
The self-assembly of monoacyl lipids in solution is studied employing a model
in which the lipid's hydrocarbon tail is described within the Rotational
Isomeric State framework and is attached to a simple hydrophilic head.
Mean-field theory is employed, and the necessary partition function of a single
lipid is obtained via a partial enumeration over a large sample of molecular
conformations. The influence of the lipid architecture on the transition
between the lamellar and inverted-hexagonal phases is calculated, and
qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
- …
