329 research outputs found
Efficiency of Dopant-Induced Ignition of Helium Nanoplasmas
Helium nanodroplets irradiated by intense near-infrared laser pulses ignite
and form highly ionized nanoplasmas even at laser intensities where helium is
not directly ionized by the optical field, provided the droplets contain a few
dopant atoms. We present a combined theoretical and experimental study of the
He nanoplasma ignition dynamics for various dopant species. We find that the
efficiency of dopants to ignite a nanoplasma in helium droplets strongly varies
and mostly depends on (i) the pick-up process, (ii) the number of free
electrons each dopant donates upon ionization, and remarkably, (iii) by the
hitherto unexplored effect of the dopant location in or on the droplet
Nursing needs and resources in Missouri
Digitized 2007 AES.Includes bibliographical references
NASA Desert RATS 2010: Preliminary Results for Science Operations Conducted in the San Francisco Volcanic Field, Arizona
The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond earth orbit. These mission plans include the exploration of planetary surfaces with significant gravity fields. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series tests of hardware and operations carried out annually in the high desert of Arizona. Conducted since 1998, these activities are designed to exercise planetary surface hardware and operations in relatively harsh climatic conditions where long-distance, multi-day roving is achievabl
Pseudogap and charge density waves in two dimensions
An interaction between electrons and lattice vibrations (phonons) results in
two fundamental quantum phenomena in solids: in three dimensions it can turn a
metal into a superconductor whereas in one dimension it can turn a metal into
an insulator. In two dimensions (2D) both superconductivity and charge-density
waves (CDW) are believed to be anomalous. In superconducting cuprates, critical
transition temperatures are unusually high and the energy gap may stay unclosed
even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the
resistivity below the transition can decrease with temperature even faster than
in the normal phase and a basic prerequisite for the CDW, the favourable
nesting conditions (when some sections of the Fermi surface appear shifted by
the same vector), seems to be absent. Notwithstanding the existence of
alternatives to conventional theories, both phenomena in 2D still remain the
most fascinating puzzles in condensed matter physics. Using the latest
developments in high-resolution angle-resolved photoemission spectroscopy
(ARPES) here we show that the normal-state pseudogap also exists in one of the
most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is
driven by a conventional nesting instability, which is masked by the pseudogap.
Our findings reconcile and explain a number of unusual, as previously believed,
experimental responses as well as disprove many alternative theoretical
approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are
intriguingly similar to those seen in superconducting cuprates.Comment: 14 pages including figures and supplementary informatio
Unaveraged modelling of a LWFA driven FEL
Preliminary simulations of a Laser Wakefield Field Accelerator driven FEL are presented using the 3D unaveraged, broad bandwidth FEL simulation code Puffin. The radius of the matched low emittance electron beam suggests that the FEL interaction will be strongly affected by radiation diffraction. The parameter scaling and comparison between 3D and equivalent 1D simulations appears to confirm the interaction is diffraction dominated. Nevertheless, output powers are predicted to be greater than those of similar unaveraged FEL models. Possible reasons for the discrepancies between the averaged and unaveraged simulation results are discussed
Fermi surface nesting in several transition metal dichalcogenides
By means of high-resolution angle resolved photoelectron spectroscopy (ARPES)
we have studied the fermiology of 2H transition metal dichalcogenide polytypes
TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic
structure, extracted from ARPES spectra for all three compounds, was used to
calculate the Lindhard function (bare spin susceptibility), which reflects the
propensity to charge density wave (CDW) instabilities observed in TaSe2 and
NbSe2. We show that though the Fermi surfaces of all three compounds possess an
incommensurate nesting vector in the close vicinity of the CDW wave vector, the
nesting and ordering wave vectors do not exactly coincide, and there is no
direct relationship between the magnitude of the susceptibility at the nesting
vector and the CDW transition temperature. The nesting vector persists across
the incommensurate CDW transition in TaSe2 as a function of temperature despite
the observable variations of the Fermi surface geometry in this temperature
range. In Cu0.2NbS2 the nesting vector is present despite different doping
level, which lets us expect a possible enhancement of the CDW instability with
Cu-intercalation in the CuxNbS2 family of materials.Comment: Accepted to New J. Phy
Gas damping force noise on a macroscopic test body in an infinite gas reservoir
We present a simple analysis of the force noise associated with the
mechanical damping of the motion of a test body surrounded by a large volume of
rarefied gas. The calculation is performed considering the momentum imparted by
inelastic collisions against the sides of a cubic test mass, and for other
geometries for which the force noise could be an experimental limitation. In
addition to arriving at an accurated estimate, by two alternative methods, we
discuss the limits of the applicability of this analysis to realistic
experimental configurations in which a test body is surrounded by residual gas
inside an enclosure that is only slightly larger than the test body itself.Comment: 8 pages. updated with correct translational damping coefficient for
cylinder on axis. added cylinder orthogonal to symmetry axis, force and
torque. slightly edited throughou
Possible Evidence for Iron Sulfates, Iron Sulfides, and Elemental Sulfur at Gusev Crater, Mars, from Mer, Crism, and Analog Data
The Mossbauer (MB) spectrometers on the Mars Exploration Rovers (MER) Spirit (Gusev crater) and Opportunity (Meridiani Planum) have detected 14 Fe-bearing phases, and mineralogical assignments have been made for all except 3. Identified Fe2+-bearing phases are olivine, pyroxene, ilmenite, and troilite. Magnetite and chromite are present as mixed Fe(2+) and Fe(3+) phases. Identified Fe(3+) phase are jarosite, hematite, goethite, and nanophase ferric oxide (npOx). Fe(sup 0) (iron metal) is present as kamacite. Nanophase ferric oxide (npOx) is a generic name for octahedrally coordinated Fe(3+) alteration products that cannot be otherwise mineralogically assigned on the basis of MER data. On the Earth, npOx would include ferrihydrite, iddingsite, schwertmannite, akaganeite, and superparamagnetic hematite and goethite. The Mars Reconnaissance Orbiter CRISM instrument, a visible, near-IR hyperspectral imager (approximately 0.35 to 4 micron) enables mineralogical examination of Mars with a tool that is sensitive to H2O and to M-OH (M = Al, Si, Fe, Mg, etc.) at spatial resolution of about 20 m/pixel. We examined a CRISM image of the MER region of Gusev crater (Columbia Hills and plains to the west), looking for spectral evidence of the aqueous process apparent from the MER analyses. We also searched for spectral constraints for the mineralogical composition of our unidentified Fe-bearing phases and the forms of npOx present on Mars. We also consider evidence from analogue samples that the precursor for the goethite detected by MB in Clovis Class rocks is an iron sulfide. We suggest that there is some indirect evidence that elemental sulfur might be present to different extents in Clovis Class rocks, the Fe3Sulfate-rich soils, and perhaps even typical (Laguna Class) surface soils
- …
