995 research outputs found

    Theoretical study of a cold atom beam splitter

    Full text link
    A theoretical model is presented for the study of the dynamics of a cold atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is split between the two branches of this laser guide, and we compare experimental measurements of the splitting efficiency with semiclassical simulations. We then explore the possibilities of optimization of this beam splitter. Our numerical study also gives access to detailed information, such as the atom temperature after the splitting

    Propagation of Bose-Einstein condensates in a magnetic waveguide

    Full text link
    Gaseous Bose-Einstein condensates of 2-3 million atoms were loaded into a microfabricated magnetic trap using optical tweezers. Subsequently, the condensates were released into a magnetic waveguide and propagated 12 mm. Single-mode propagation was observed along homogeneous segments of the waveguide. Inhomogeneities in the guiding potential arose from geometric deformations of the microfabricated wires and caused strong transverse excitations. Such deformations may restrict the waveguide physics that can be explored with propagating condensates.Comment: 5 pages, 4 figure

    Teaching physics with 670 nm diode lasers—construction of stabilized lasers and lithium cells

    Get PDF
    We describe the construction and operation of stabilized 670 nm diode lasers for use in undergraduate teaching labs. Because they emit low‐power visible radiation, 670 nm lasers are safe and aesthetically pleasing, and thus are an attractive alternative to near‐infrared diode lasers in the undergraduate laboratory. We also describe the fabrication of a robust and reliable lithium atomic vapor cell, which can be used with the 670 nm diode lasers to perform a variety of atomic physics experiments

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Stability of axial orbits in galactic potentials

    Full text link
    We investigate the dynamics in a galactic potential with two reflection symmetries. The phase-space structure of the real system is approximated with a resonant detuned normal form constructed with the method based on the Lie transform. Attention is focused on the stability properties of the axial periodic orbits that play an important role in galactic models. Using energy and ellipticity as parameters, we find analytical expressions of bifurcations and compare them with numerical results available in the literature.Comment: 20 pages, accepted for publication on Celestial Mechanics and Dynamical Astronom

    Bohr-Sommerfeld Quantization of Periodic Orbits

    Get PDF
    We show, that the canonical invariant part of \hbar corrections to the Gutzwiller trace formula and the Gutzwiller-Voros spectral determinant can be computed by the Bohr-Sommerfeld quantization rules, which usually apply for integrable systems. We argue that the information content of the classical action and stability can be used more effectively than in the usual treatment. We demonstrate the improvement of precision on the example of the three disk scattering system.Comment: revte

    Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    Get PDF
    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics

    Momentum transfer using chirped standing wave fields: Bragg scattering

    Full text link
    We consider momentum transfer using frequency-chirped standing wave fields. Novel atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure

    Realization of Bose-Einstein condensates in lower dimensions

    Full text link
    Bose-Einstein condensates of sodium atoms have been prepared in optical and magnetic traps in which the energy-level spacing in one or two dimensions exceeds the interaction energy between atoms, realizing condensates of lower dimensionality. The cross-over into two-dimensional and one-dimensional condensates was observed by a change in aspect ratio and saturation of the release energy when the number of trapped atoms was reduced

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL
    corecore